Question

In: Physics

Light at 633 nm from a helium–neon laser shines on a pair of parallel slits separated...

Light at 633 nm from a helium–neon laser shines on a pair of parallel slits separated by 1.57 ✕ 10−5 m and an interference pattern is observed on a screen 2.10 m from the plane of the slits.

1. find angle from central maximum to first bright fringe

2. at what angle from central maximum does the second dark fringe appear?

3. find the distance (in m) from the central maximum to the first bright fringe.

Solutions

Expert Solution


Related Solutions

Light from a helium-neon laser (? = 633 nm) is used to illuminate two narrow slits....
Light from a helium-neon laser (? = 633 nm) is used to illuminate two narrow slits. The interference pattern is observed on a screen 3.3m behind the slits. Eleven bright fringes are seen, spanning a distance of 54mm . What is the spacing (in mm) between the slits?
Red laser light with a wavelength of 633 nm shines on a surface with destructive interference...
Red laser light with a wavelength of 633 nm shines on a surface with destructive interference for that wavelength. The surface will appear: 1. white. 2. violet. 3. red. 4. black.
Light from a red laser (650 nm) is incident on two slits separated by 0.5 mm....
Light from a red laser (650 nm) is incident on two slits separated by 0.5 mm. Each slit is 0.25 mm wide. Quantitatively sketch the pattern you would observe on a screen that is located 2.0 m from the slits. Your sketch should range from -10 mm to 10 mm and include only the fringes you would observe. (Label the locations of the fringes) PLEASE EXPLAIN THOROUGHLY!!!!
A helium neon laser emits red light of wavelength 632.8 nm, which is obtained when neon...
A helium neon laser emits red light of wavelength 632.8 nm, which is obtained when neon atoms move from level 5s to level 3p. Given is a tube that contains 0.25 moles of a helium-neon mix, of which 15% are neon atoms. Also given is that while the laser is active, around 2% of the neon atoms are located at one of the two given energy levels at any time. a) what is the difference in energy between levels 5s...
In Young’s experiment, monochromatic light of wavelength 600 nm shines on two slits separated by 0.3...
In Young’s experiment, monochromatic light of wavelength 600 nm shines on two slits separated by 0.3 mm, producing an interference pattern on a screen that is 2.0 m away. You put a thin sheet of glass (n = 1.5) at the top slit and you observe a dark fringe the central location of the screen. Furthermore, the fourth bright spot on both sides of the central location is missing. (a) Sketch the resulting interference pattern. Precisely state the spacing between...
The polarization of a helium-neon laser can change with time. The light from a laser is...
The polarization of a helium-neon laser can change with time. The light from a laser is initially horizontally polarized; as the laser warms up, the light changes to be vertically polarized. Suppose the laser beam passes through a polarizer whose axis is 50 ∘ from horizontal. By what percent does the light intensity transmitted through the polarizer change as the laser warms up?
1.Consider a 465 nm wavelength blue light falling on a pair of slits separated by 0.055...
1.Consider a 465 nm wavelength blue light falling on a pair of slits separated by 0.055 mm. A) At what angle (in degrees) is the first-order maximum for the blue light? \ 2.Suppose you have a lens system that is to be used primarily for 690 nm red light. B)What is the second thinnest coating of magnesium fluorite, which has an index of refraction of n = 1.38, that would be non-reflective for this wavelength? Assume the index of refraction...
9) Monochromatic coherent light shines through a pair of slits. If the distance between these slits...
9) Monochromatic coherent light shines through a pair of slits. If the distance between these slits is decreased, which of the following statements are true of the resulting interference pattern? (There could be more than one correct choice.) A) The distance between the maxima stays the same. B) The distance between the maxima decreases. C) The distance between the minima stays the same. D) The distance between the minima increases. E) The distance between the maxima increases.
Wave Optics - Double Slit interference A helium neon laser (LaTeX: \lambda=633\:nmλ = 633 n m)...
Wave Optics - Double Slit interference A helium neon laser (LaTeX: \lambda=633\:nmλ = 633 n m) illuminates a double slit that is 2 m from a screen. The light transmitted from the slits produces an interference pattern with a 3.2 mm spacing of successive bright fringes. What is the spacing of the slits? What frequency of laser light is needed to generate a 4.0 mm spacing of successive bright fringes? How will the bright fringe spacing change if the laser...
a) 500 nm light shines through two slits with a width of 0.02 mm and a...
a) 500 nm light shines through two slits with a width of 0.02 mm and a separation of 0.08 mm. List the first two missing orders. b) How many bright spots are contained in the central diffraction maximum? c) What is the width of the central diffraction maximum? d) Find the angle (theta) associated with the first dark spot on the screen.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT