Question

In: Chemistry

The reaction N2O(g) + O2(g) NO2(g) +NO(g) has ΔHº = -42.9 kJ and ΔSº = -26.1...

The reaction N2O(g) + O2(g) NO2(g) +NO(g) has ΔHº = -42.9 kJ and ΔSº = -26.1 J/K. Suppose 0.400 mol of N2O and 0.400 of O2 are placed in a 8.00 L container at 400 ºC and this equilibrium is established. What percentage of the N2O has reacted? (Note: Assume that ΔH and ΔS are relatively insensitive to temperature, so ΔHº298 and ΔSº298 are about the same as ΔHº673 and ΔSº673 respectively.) Enter your answer with 2 significant digits.

Solutions

Expert Solution

First calculate the dG as follows:

dG = dH - TdS

dG = -42.9 kJ *1000 J /1.0KJ -673 K *-26.1 J/K

dG = -42900 +17565.3 J

dG =-25334.7 J

Now equilibrium constant :

dG = -2.3RT log Keq

- 25334.7= -2.3 * 8.34 J /mol K *673 log Keq

log Keq=25334.7/12869.24

log Keq=1.97= 93.325

The reaction N2O(g) + O2(g) = NO2(g) +NO

I                  0.05            0.05            0        0

C                 -x                -x                +x     +x

E       0.05-x                   0.05-x         x        x

K eq = [NO2] [NO] / [N2O] [ O2]

93.325= x*x / (0.05-x)2

taking under root

9.66 = x / 0.05-x

0.483 -9.66 x= x

0.483 = 10.66 x

x= 0.045 M

at equilibrium N2O = 0.05-x = 0.05-0.045 = 5*10^-3

Now calculate the percentage of the N2O has reacted as follows:

5*10^-3 / 0.05*100= 10%


Related Solutions

The reaction NO2 (g) + NO (g) ⇌ N2O (g) + O2 (g) reached equilibrium at...
The reaction NO2 (g) + NO (g) ⇌ N2O (g) + O2 (g) reached equilibrium at a certain high temperature. Originally, the reaction vessel contained the following initial concentration: [NO2]i = 0.0560 M, [NO]i = 0.294 M, [N2O] = 0.184 M, and [O2] = 0.377 M. The concentration of the NO2, the only colored gas in the mixture, was monitored by following the intensity of the color. At equilibrium, the NO2 concentration had become 0.118 M. What is the value...
The reaction                                     NO(g) + O3 -> NO2(g) + O2(g
The reaction                                     NO(g) + O3 -> NO2(g) + O2(g) was studied in 2 experiments under pseudo-first order conditions. a) [O3] = 1x1014 molecules/cc in excess the [NO] varied as follows   {Note, time is in msec (1 msec = 1x10-3 s)!}             time (msec)                 NO (molecules/cc)                         0                      6x108                           100                  5x108                           500                  2.4x108                         700                  1.7x108                         1000                9.9x107 b) [NO] = 2x1014 molecules/cc in excess                  time (msec)                 O3 (molecules/cc)                         0                      1x1010                         50                    8.4x109                                   ...
Consider the first order reaction 2 N2O(g) ⟶ 2 N2 (g) + O2(g). What will [N2O]...
Consider the first order reaction 2 N2O(g) ⟶ 2 N2 (g) + O2(g). What will [N2O] be after 3 half lives when 0.25 moles N2O is placed in a 1.00-L reaction vessel?
Consider the following reaction occurring at 298 K: N2O(g)+NO2(g)⇌3NO(g) Part A Show that the reaction is...
Consider the following reaction occurring at 298 K: N2O(g)+NO2(g)⇌3NO(g) Part A Show that the reaction is not spontaneous under standard conditions by calculating ΔG∘rxn. Part B If a reaction mixture contains only N2O and NO2 at partial pressures of 1.0 atm each, the reaction will be spontaneous until some NO forms in the mixture. What maximum partial pressure of NO builds up before the reaction ceases to be spontaneous? Part C What temperature is required to make the reaction spontaneous...
Consider the reaction for the production of NO2 from NO: 2NO(g)+O2(g)→2NO2(g) -If 85.5 L of O2(g),...
Consider the reaction for the production of NO2 from NO: 2NO(g)+O2(g)→2NO2(g) -If 85.5 L of O2(g), measured at 34.0 ∘C and 633 mmHg , is allowed to react with 143 g of NO, find the limiting reagent. -If 98.2 L of NO2 forms, measured at 34.0 ∘C and 633 mmHg , what is the percent yield?
at 200 oC Kc = 1.4 x 10-10 for the reaction N2O(g) + NO2(g) <-> 3NO(g)....
at 200 oC Kc = 1.4 x 10-10 for the reaction N2O(g) + NO2(g) <-> 3NO(g). If 300 ml of NO measured at 800 torr and 25 oC is placed in a 4.00 L container. what will be the N2O and NO molar concentrations at equilibrium? What will be the total pressure of the mixture (in torr) at equilibrium at 25 oC? 14.98 Jespersen 7th Ed.
At 300 K, Kc=1.65x10-10 for the reaction: N2O(g) + NO2(g) ⇄ 3NO(g) If 0.400 mol of...
At 300 K, Kc=1.65x10-10 for the reaction: N2O(g) + NO2(g) ⇄ 3NO(g) If 0.400 mol of N2O and 0.600 mol NO2 are added into a 4.00 L container, what will the concentration NO be at equilibrium?
Consider the following reaction at 173 K: 2 N2O (g) → 2 N2 (g) + O2...
Consider the following reaction at 173 K: 2 N2O (g) → 2 N2 (g) + O2 (g) In one of your laboratory experiments, you determine the equilibrium constant for this process, at 173 K, is 6.678E+57. You are given a table of data that indicates the standard heat of formation (ΔHoform) of N2O is 82.0 kJ/mol. Based on this information, what is the standard entropy change (ΔSorxn) for this reaction at 173 K? ΔSorxn(J/K)=
A) According to the (unbalanced) reaction: NH3(g) + O2(g) ----> NO2 (g) + H20 (l) What...
A) According to the (unbalanced) reaction: NH3(g) + O2(g) ----> NO2 (g) + H20 (l) What volume of NO2(g) will be produced from the combustion of 521 g of O2(g), assuming the reaction takes place at standard temperature and pressure? B) What mass of water will be produced if a 38.1 L sample of ammonia at 1.13 atm of pressure and. 23.1 degree celcius reacts completely?
What is the overall order of the reaction below 2 NO(g) + O2(g) → 2 NO2(g)...
What is the overall order of the reaction below 2 NO(g) + O2(g) → 2 NO2(g) if it proceeds via the following rate expression? a) zero-order          b) first-order          c) second-order     d) third-order        e) fourth-order
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT