Question

In: Physics

A textbook of mass 2.00kg rests on a frictionless, horizontal surface. A cord attached to the...

A textbook of mass 2.00kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.100m , to a hanging book with mass 2.98kg . The system is released from rest, and the books are observed to move a distance 1.15m over a time interval of 0.850s

Solutions

Expert Solution

we find the linear acceleration by knowing the masses moved 1.3 m in 0.8s

distance = 1/2 at^2 => a=2d/t^2
a=2*1.3m/0.64s^2=4.06m/s/s

now apply newton's second law to the 2kg book:

T1= 2a =>T1=2kg*4.06m/s/s=8.12N

apply newton's second law to T2:

T2-mg = -ma
T2=3g-3a=3(9.8m/s/s-4.06m/s/s)=17.2N

now, consider the pulley

T1 exerts a force of 8.12 N in one direction, and T2 exerts a force of 17.2N in the opposite direction, the net force on the pulley of
9.08N generates a torque

the amount of torque =(T2-T1)R since this force acts a distance R from the rotation axis of the pulley

this torque produces an angular acceleration equal to

torque = I alpha where I is the moment of inertia and alpha is the angular acceleration

alpha is related to linear acceleration according to

a=R alpha or alpha =a/R, so we combine all these and get

(T2-T1)R=I(a/R)
I=(T2-T1)R^2/a =9.08N*(0.06m)^2/4.06m/s/s
I=8.1x10^(-3)kgm^2


Related Solutions

A textbook of mass 2.06 kg rests on a frictionless, horizontal surface. A cord attached to...
A textbook of mass 2.06 kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.100 m , to a hanging book with mass 2.99 kg . The system is released from rest, and the books are observed to move a distance 1.24 m over a time interval of 0.750 s. a) What is the tension in the part of the cord attached to the textbook? b) What is the...
A 2.00 kg textbook rests on a frictionless, horizontal surface. A cord attached to the book...
A 2.00 kg textbook rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.130 m, to a hanging book with mass 3.20 kg. The system is released from rest, and the books are observed to move 1.20 m in 0.850 s. Part A.) What is the tension in the part of the cord attached to the textbook? Part B.) What is the tension in the part of the cord attached...
a)An object of mass ?m rests on a horizontal frictionless surface. A constant horizontal force of...
a)An object of mass ?m rests on a horizontal frictionless surface. A constant horizontal force of magnitude ?F is applied to the object. This force produces an acceleration: always only if ?F is larger than the weight of the object only while the object suddenly changes from rest to motion only if ?F is increasing choice A b)Now let there be friction between the surface and the object. If the object has a mass of 10 kg, and ??μs =...
A mass; m1 = 64 g, sits on a frictionless horizontal surface, and is attached to...
A mass; m1 = 64 g, sits on a frictionless horizontal surface, and is attached to a spring of spring constant k = 51 N/m. The other end of the horizontal spring is attached to a wall; the system is in equilibrium. Another mass; m2 = 18 g, strikes the stationary mass m1, and sticks to it. As a result, the spring is compressed by a distance of 24.5 cm before the masses come to a momentary stop. a) How...
(question1- )A 5 kg mass is attached to a spring on a horizontal frictionless surface. the...
(question1- )A 5 kg mass is attached to a spring on a horizontal frictionless surface. the elastic constant of the spring is 48.7 n/m if the mass is 31.6 cm right (+) of the equilbrium point and moving at speed 4.8 m/s find the total mechanical energy.? ( question2-) A 5 kg mass is attached to a spring on a horizontal frictionless surface. the elastic constant of the spring is 30.3 n/m .if the mass is 24.5 cm right (+)...
A mass resting on a horizontal, frictionless surface is attached to one end of a spring;...
A mass resting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. It takes 3.7 J of work to compress the spring by 0.14 m . If the spring is compressed, and the mass is released from rest, it experiences a maximum acceleration of 12 m/s2. Find the value of the spring constant. Find the value of the mass.
A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of...
A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of mass m2=9.4 kg hangs from an ideal cord of negligible mass, which runs over an ideal pulley and then is connected to the side of the first block. The blocks are released from rest. How far will block 1 move during the 1.1 second interval?
A 0.25 kg mass sliding on a horizontal frictionless surface is attached to one end of...
A 0.25 kg mass sliding on a horizontal frictionless surface is attached to one end of a horizontal spring (with k = 800 N/m) whose other end is fixed. The mass has a kinetic energy of 9.0 J as it passes through its equilibrium position (the point at which the spring force is zero). 1.At what rate is the spring doing work on the mass as the mass passes through its equilibrium position? 2.At what rate is the spring doing...
A block rests on a horizontal frictionless table. It is attached to a spring and set...
A block rests on a horizontal frictionless table. It is attached to a spring and set into motion. Consider what will happen to the frequency or period in each of the following situations. (increase, decrease, or stay the same) If the spring constant is cut in half (looser spring), the frequency will _______. If the spring constant is cut in half (looser spring), the period will _______. If the amplitude of the motion is doubled, the frequency will ______. If...
If an object on a horizontal frictionless surface is attached to a spring, displaced, and then...
If an object on a horizontal frictionless surface is attached to a spring, displaced, and then released, it oscillates. Suppose it is displaced 0.125 m from its equilibrium position and released with zero initial speed. After 0.860 s, its displacement is found to be 0.125 m on the opposite side and it has passed the equilibrium position once during this interval.Find the amplitude of the motion.=________________mFind the period of the motion.=________________sFind the frequency of the motion.=_________________Hz
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT