Question

In: Physics

A 2.00 kg textbook rests on a frictionless, horizontal surface. A cord attached to the book...

A 2.00 kg textbook rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.130 m, to a hanging book with mass 3.20 kg. The system is released from rest, and the books are observed to move 1.20 m in 0.850 s. Part A.) What is the tension in the part of the cord attached to the textbook? Part B.) What is the tension in the part of the cord attached to the hanging book? Part C.) What is the moment of inertia of the pulley about its rotation axis?

Solutions

Expert Solution


Related Solutions

A textbook of mass 2.00kg rests on a frictionless, horizontal surface. A cord attached to the...
A textbook of mass 2.00kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.100m , to a hanging book with mass 2.98kg . The system is released from rest, and the books are observed to move a distance 1.15m over a time interval of 0.850s
A 2.20-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 2.20-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 18.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. (a) Find the force constant of the spring. N/m (b) Find the frequency of the oscillations. Hz (c)...
A 1.30 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring...
A 1.30 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring with k = 410 N/m. Let x be the displacement of the block from the position at which the spring is unstretched. At t = 0 the block passes through x = 0 with a speed of 7.60 m/s in the positive x direction. What are the (a) frequency and (b) amplitude of the block's motion? (a) Number Enter your answer for part (a)...
(question1- )A 5 kg mass is attached to a spring on a horizontal frictionless surface. the...
(question1- )A 5 kg mass is attached to a spring on a horizontal frictionless surface. the elastic constant of the spring is 48.7 n/m if the mass is 31.6 cm right (+) of the equilbrium point and moving at speed 4.8 m/s find the total mechanical energy.? ( question2-) A 5 kg mass is attached to a spring on a horizontal frictionless surface. the elastic constant of the spring is 30.3 n/m .if the mass is 24.5 cm right (+)...
A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of...
A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of mass m2=9.4 kg hangs from an ideal cord of negligible mass, which runs over an ideal pulley and then is connected to the side of the first block. The blocks are released from rest. How far will block 1 move during the 1.1 second interval?
A block rests on a horizontal frictionless table. It is attached to a spring and set...
A block rests on a horizontal frictionless table. It is attached to a spring and set into motion. Consider what will happen to the frequency or period in each of the following situations. (increase, decrease, or stay the same) If the spring constant is cut in half (looser spring), the frequency will _______. If the spring constant is cut in half (looser spring), the period will _______. If the amplitude of the motion is doubled, the frequency will ______. If...
A ball of mass 2.00 kg, resting on a horizontal frictionless surface, gets hit by another...
A ball of mass 2.00 kg, resting on a horizontal frictionless surface, gets hit by another ball of mass 1.50 kg moving in the +x-direction with a speed 4.00 m/s. After the collision, the 1.50 kg ball has a speed of 2.00 m/s at an angle 60.0° counterclockwise from the +x-direction. a) Find the velocity of the 2.00 kg ball just after the collision. Express your answer in vector form. b) Compute the percent of kinetic energy lost in the...
If an object on a horizontal frictionless surface is attached to a spring, displaced, and then...
If an object on a horizontal frictionless surface is attached to a spring, displaced, and then released, it oscillates. Suppose it is displaced 0.125 m from its equilibrium position and released with zero initial speed. After 0.860 s, its displacement is found to be 0.125 m on the opposite side and it has passed the equilibrium position once during this interval.Find the amplitude of the motion.=________________mFind the period of the motion.=________________sFind the frequency of the motion.=_________________Hz
A 25-gram block is resting on a horizontal, frictionless surface and is attached to a horizontal...
A 25-gram block is resting on a horizontal, frictionless surface and is attached to a horizontal spring of k = 210 N/m. The spring is stretched so that the block is 27 cm away from the spring’s equilibrium position and released from rest. a) What is the velocity of the block when it passes through the equilibrium point? b) At what distance from equilibrium is the spring’s potential energy equal to the block’s kinetic energy? c) Suppose the block has...
A block of wood slides on a frictionless horizontal surface. It is attached to a spring...
A block of wood slides on a frictionless horizontal surface. It is attached to a spring and oscillates with a period of 0.8 s. A second block rests on top of the first. The coefficient of static friction between the two blocks is 0.25. If the amplitude of oscillations is 1.2 cm, will the block on the top slip? What is the greatest amplitude of oscillation for which the top block will not slip?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT