Question

In: Electrical Engineering

Six poles, 60 [Hz], and three super-executive induction motors have total load revolutions of 1,050 [rpm]....

Six poles, 60 [Hz], and three super-executive induction motors have total load revolutions of 1,050 [rpm]. In order to rotate it to 1000 rpm on the same torque, determine what external resistance [ohm] should be inserted into the secondary side. However, the second side has r2 resistance in the Y duel.

Solutions

Expert Solution


Related Solutions

A three phase 30 hp 460 volt 60 hz, 1770 rpm design B induction motor with...
A three phase 30 hp 460 volt 60 hz, 1770 rpm design B induction motor with class F insulation and service factor of 1.0 is operating at rated shaft load in a 40 degree C environment and has an expected 20 yr life. A maintenance check shows line to line voltages to be 449.2 V, 431.3 V and 462.4 volts. The percent unbalanced voltage for this motor is: the expected temperature rise equals? The expected insulation life equals? the rerating...
A 400 V,50 Hz, six-pole three-phase induction motor drives a constant load of 140 N.m. The...
A 400 V,50 Hz, six-pole three-phase induction motor drives a constant load of 140 N.m. The motor has the following parameters ?1=0.294 Ω ?1=1.39 ?? ??=41 ?? ?2′=0.156 Ω ?2′=0.74 ?? 1) Starting. Calculate the following: i) Motor starting current. ii) Motor starting torque. 2) Maximum operating point. Calculate the following: i) Slip at which maximum torque is developed. ii) Maximum torque developed. 3) Steady-state operation. Calculate the following: i) Motor slip. ii) Motor speed. iii) Motor current. iv) Motor...
A Y- connected, 460- V, 1710- rpm, 60- Hz, 4- pole squirrel cage induction motor has...
A Y- connected, 460- V, 1710- rpm, 60- Hz, 4- pole squirrel cage induction motor has a rotor current at starting 6 times the rotor current at full load. Calculate: a. The starting torque as percent of full load torque. b. The slip and speed at which the motor develops maximum torque. c. The maximum torque developed b the motor as percent of its full load value.
A three-phase, 11.2-kW, 1750-rpm, 460-V, 60-Hz, four-pole, Y-connected induction motor has the following parameters: Rs =...
A three-phase, 11.2-kW, 1750-rpm, 460-V, 60-Hz, four-pole, Y-connected induction motor has the following parameters: Rs = 0.53 Ω, R’r = 0.38 Ω, Xs = 1.23 Ω, X’r = 1.45 Ω, and Xm = 25.2 Ω. The motor is controlled by varying both the voltage and frequency. The volts/hertz ratio, which corresponds to the rated voltage and rated frequency, is maintained constant. a) Calculate the maximum torque, Tm and the corresponding speed, ꞷm for 60 Hz and 30 Hz. b) Repeat...
A 6-pole and three-phase induction motor has synchronous speed of (1000) RPM. a) Find the no-load...
A 6-pole and three-phase induction motor has synchronous speed of (1000) RPM. a) Find the no-load and full-load operating speed of motor for the cases given, 1. 2.5Hz electrical frequency of rotor for no-load condition. 2. 6.3Hz electrical frequency of rotor for full-load condition. b) Find the speed regulation of motor by using parameters found above. c) Determine the electrical frequency of rotor under full-load condition so that speed regulation would be equal to 5%? (Electrical frequency of rotor for...
Q3) A three-phase, Y-connected, 220 V, 13 kW, 60 Hz, six-pole induction motor has the following...
Q3) A three-phase, Y-connected, 220 V, 13 kW, 60 Hz, six-pole induction motor has the following parameter values in Ω/phase referred to the stator: R1 = 0.3 Ω. R2' = 0.15 Ω X1 = 0.5 Ω. X2'= 0.21 Ω Xm = 13.25 Ω The total rotational losses are 450 W. The core loss is lumped in with the rotational losses. For a slip of 0.02, and based on approximate equivalent circuit, determine: (i) The rotor speed. (ii) The stator current....
A three phase 10kW, 1700rpm, 60Hz, four poles, Y connected induction motor has a no-load speed...
A three phase 10kW, 1700rpm, 60Hz, four poles, Y connected induction motor has a no-load speed of 1750rpm. The rotational mechanical losses are constant and equal to 500W. The core losses are constant and equal to 300W. The copper losses in the stator equal to the copper losses in the rotor at full load. If the rotor resistance per phase is 0.25?, calculate the following: a.The frequency of the induced current in the rotor circuit at full load. b.The percentage...
A   three-phase,   460-V,   60-Hz,   six-pole   Y-connected   induction   motor   has   Rs = 0.32 Ω, R′ r =...
A   three-phase,   460-V,   60-Hz,   six-pole   Y-connected   induction   motor   has   Rs = 0.32 Ω, R′ r = 0.18 Ω, Xs = 1.04 Ω, X′ r = 1.6 Ω,   and   Xm = 18.8 Ω.   The   no-load   loss,   Pno load,   is   negligible.   The   load   torque,   which   is   proportional   to   speed   squared,   is   180 N#m   at   1180   rpm.   If   the   motor   speed   is   850   rpm,   determine   (a)   the   load   torque   demand   TL; (b)   the   rotor   current   I′ r; (c)   the   stator   supply   voltage   Va;...
A 400V, 2 pole, 50 Hz, three-phase induction motor is drawing 60 A at 0.85 PF...
A 400V, 2 pole, 50 Hz, three-phase induction motor is drawing 60 A at 0.85 PF lagging. The stator copper losses are 2 kW, the stator core losses are 1.8 kW and rotor copper losses are 700 W. The friction and windage losses are 600 W, the stray loss 100 W, and rotor core loss 100 W. Find the following quantities: a. The air gap power. b. The developed mechanical power. c. The output power. d. The efficiency of the...
The following test data apply to a 110 kVA, 2300 V three-phase four-pole 60 Hz induction...
The following test data apply to a 110 kVA, 2300 V three-phase four-pole 60 Hz induction motor. No load test at rated voltage and frequency: Load current = 8.1 A, Three-phase power = 3025 W Blocked-rotor test at rated current and 15 Hz: Line voltage = 268 V, Three-phase power = 10.2 kW Stator resistance between line terminals = 2.34 Ω. Compute the stator current and power factor, kW output, and efficiency when this motor is operating at rated voltage...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT