Question

In: Electrical Engineering

A 400 V,50 Hz, six-pole three-phase induction motor drives a constant load of 140 N.m. The...

A 400 V,50 Hz, six-pole three-phase induction motor drives a constant load of 140 N.m. The motor has the following parameters
?1=0.294 Ω
?1=1.39 ??
??=41 ??
?2′=0.156 Ω
?2′=0.74 ??

1) Starting.
Calculate the following:
i) Motor starting current.
ii) Motor starting torque.

2) Maximum operating point. Calculate the following:
i) Slip at which maximum torque is developed.
ii) Maximum torque developed.

3) Steady-state operation.
Calculate the following:
i) Motor slip.
ii) Motor speed.
iii) Motor current.
iv) Motor power factor.
v) Motor input power.
vi) Motor output power.
vii) Motor efficiency.

4) Speed control of the induction motor:
We need to control the speed of the load by controlling the speed of the induction motor using the ?/? method. The load should be driven at 700 rpm at the same slip obtained in part   3-i above. Calculate the following:
i) The source line-line voltage and frequency.
ii) Motor current.
iii) Motor power factor.
iv) Motor input power.
v) Motor output power.
vi) Motor efficiency.

vii) The line voltage control method can not be used here to reduce the motor speed to 700 rpm, Why? Fully explain your answer.

Notes:
- For calculation:
▪ Use the recommended IEEE equivalent circuit.
▪ Use five decimal digits.
▪ Make sure all equations and numbers are clear.

What is missing?

Solutions

Expert Solution


Related Solutions

A 6-pole, 50 Hz, 3-phase induction motor running on full load develops a useful torque of...
A 6-pole, 50 Hz, 3-phase induction motor running on full load develops a useful torque of 160 Nm when the rotor emf makes 120 complete cycles per minute. The windage and friction loss is 1005.30 Watt. It is assumed; the core loss is lumped together with the windage and friction loss. The total stator loss is given to be 800 Watt. Compute: a) Shaft power output, b) The copper loss in the rotor winding,c) The input power to the motor, and d) The...
Tests were carried out on a three-phase 220 V, 50 Hz, 4-pole delta-connected induction motor. The...
Tests were carried out on a three-phase 220 V, 50 Hz, 4-pole delta-connected induction motor. The following results were obtained from open circuit (no-load) and short circuit tests.             Open Circuit (no-load) Test Applied Stator Voltage VLine (V) Stator Line Current ILine (A) Total Input Power Pin (W) 240 9.6 536 220 7.2 420 200 5.4 352 180 4.3 304 160 3.5 276 140 3.0 248 120 2.5 224             Short Circuit (locked rotor) Test Applied Stator Voltage VLine (V) Stator Line...
Q3) A three-phase, Y-connected, 220 V, 13 kW, 60 Hz, six-pole induction motor has the following...
Q3) A three-phase, Y-connected, 220 V, 13 kW, 60 Hz, six-pole induction motor has the following parameter values in Ω/phase referred to the stator: R1 = 0.3 Ω. R2' = 0.15 Ω X1 = 0.5 Ω. X2'= 0.21 Ω Xm = 13.25 Ω The total rotational losses are 450 W. The core loss is lumped in with the rotational losses. For a slip of 0.02, and based on approximate equivalent circuit, determine: (i) The rotor speed. (ii) The stator current....
A 400V, 2 pole, 50 Hz, three-phase induction motor is drawing 60 A at 0.85 PF...
A 400V, 2 pole, 50 Hz, three-phase induction motor is drawing 60 A at 0.85 PF lagging. The stator copper losses are 2 kW, the stator core losses are 1.8 kW and rotor copper losses are 700 W. The friction and windage losses are 600 W, the stray loss 100 W, and rotor core loss 100 W. Find the following quantities: a. The air gap power. b. The developed mechanical power. c. The output power. d. The efficiency of the...
A 3-phase, 380 V, 50 Hz , 6 pole, Y-connected induction motor has R1 = 0.1...
A 3-phase, 380 V, 50 Hz , 6 pole, Y-connected induction motor has R1 = 0.1 W , X1 = 0.4 W, R2’ = 0.12 W , X2’ = 0.4 W, Xm = 20 W , Pr = 1 kW. The motor is operated at 970 rpm what is the efficiency?
A   three-phase,   460-V,   60-Hz,   six-pole   Y-connected   induction   motor   has   Rs = 0.32 Ω, R′ r =...
A   three-phase,   460-V,   60-Hz,   six-pole   Y-connected   induction   motor   has   Rs = 0.32 Ω, R′ r = 0.18 Ω, Xs = 1.04 Ω, X′ r = 1.6 Ω,   and   Xm = 18.8 Ω.   The   no-load   loss,   Pno load,   is   negligible.   The   load   torque,   which   is   proportional   to   speed   squared,   is   180 N#m   at   1180   rpm.   If   the   motor   speed   is   850   rpm,   determine   (a)   the   load   torque   demand   TL; (b)   the   rotor   current   I′ r; (c)   the   stator   supply   voltage   Va;...
A 440 V 4-pole 3 phase 50 Hz slip ring induction motor has its stator winding...
A 440 V 4-pole 3 phase 50 Hz slip ring induction motor has its stator winding mesh connected and its rotor winding star connected. The standstill voltage measured between slip rings with the rotor open –circuited is 218 V. the stator resistance per phase is 0.6Ω and the stator reactance per phase is 3Ω. The rotor resistance per phase is 0.05Ω and the rotor reactance per phase is 0.25Ω. Calculate the maximum torque and the slip at which it occurs....
A 10-pole induction motor is fed with a 230 V, 50 Hz supply used to drive...
A 10-pole induction motor is fed with a 230 V, 50 Hz supply used to drive multiple loads with 0.85 power factor. Answer the following. i. State 3 types of starting circuit. ii. Calculate angular speed (Ns) in rpm and slip (S). Given rotor speed 550 rpm. iii. Calculate the efficiency of the motor. Given output power 1000 W, copper loss 10 W, core loss 5 W and rotational losses 80 W.
A 3 phase 460 V, 60 Hz, 4 pole, delta connected induction motor has the following...
A 3 phase 460 V, 60 Hz, 4 pole, delta connected induction motor has the following equivalent circuit parameters. Rs = 0.42 Ω, Rr = 0.23 Ω, Xs = Xr = 0.82 Ω. Xm = 22 Ω. The no load loss = 60 W and may be assumed constant. The rotor speed is 1750 rpm. Use the approximate equivalent circuit ( i.e. the Xm branch is at the very left of the circuit) determine the following a. the synchronous speed...
A 50-Hz, 440-V, 2 pole wye connected induction motor is rated at 75 kW. The equivalent...
A 50-Hz, 440-V, 2 pole wye connected induction motor is rated at 75 kW. The equivalent parameters are as follows: RS = 0.075 Ω RR’ = 0.065 Ω XS = XR’ = 0.17 Ω Xm = 7.2 Ω The losses associated with the machine are field and winding, miscellaneous and core loss with values of 1 kW, 150 W and 1.1 kW, respectively. For a slip of 4 %, determine a) The line current. (150.39  -23.08 A) b) The...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT