Question

In: Statistics and Probability

Given a sample mean of 12.5 based on 25 cases and a population variance of 10,...

Given a sample mean of 12.5 based on 25 cases and a population variance of 10, construct a 95% confidence interval for the population mean. Interpret the resulting interval.

Solutions

Expert Solution

Solution :

Given that,

= 12.5

2 = 10 = = 3.16

n = 25

At 95% confidence level the z is ,

  = 1 - 95% = 1 - 0.95 = 0.05

/ 2 = 0.05 / 2 = 0.025

Z/2 = Z0.025 = 1.960

Margin of error = E = Z/2* (/n)

= 1.960 * (3.16 / 25 ) = 1.24

At 95% confidence interval estimate of the population mean is,

- E < < + E

12.5 - 1.24 < < 12.5 + 1.24

11.26 < < 13.74

(11.3, 13.7)


Related Solutions

1. Which of these are random variables: Population mean, sample mean, population variance, sample variance, population...
1. Which of these are random variables: Population mean, sample mean, population variance, sample variance, population standard deviation, sample standard deviation, population range, sample range 2. Does variance matter? I have two routes to my work. Travel time on the first route takes me on average 20 minutes, and the second route 19 minutes. The standard deviation of travel time on the first route is 1.5 minutes, on the second is 5 minutes. Which route should I take?
Practice Problems (Chapters 9 and 11) Chapter 9 1.         Given a sample mean of 12.5 based...
Practice Problems (Chapters 9 and 11) Chapter 9 1.         Given a sample mean of 12.5 based on 25 cases and a population variance of 10, construct a 95% confidence interval for the population mean. Interpret the resulting interval. 2.         What can be expected to happen to the length of a confidence interval as the size of the sample used to construct it increases. Explain. 3.         In a short paragraph, explain the logic of confidence intervals. 4.         Can confidence intervals be...
Given a variable with the following population parameters: Mean = 20 Variance = 16 Sample Size...
Given a variable with the following population parameters: Mean = 20 Variance = 16 Sample Size = 35 a) What is the probability of obtaining a mean greater the 23? b) What is the probability of obtaining a mean less than 21? c) What is the probability of obtaining a mean less than 18.2? d) What is the probability of obtaining a mean greater than 19.5 and less than 21.2? e) What is the probability of obtaining a mean greater...
A population has a standard deviation of 25 and a mean of 300. Given a random sample of size 100, how likely is it that the sample mean will be within +/- 5 of the population mean?
A population has a standard deviation of 25 and a mean of 300. Given a random sample of size 100, how likely is it that the sample mean will be within +/- 5 of the population mean?
A random sample of 42 observations is used to estimate the population variance. The sample mean...
A random sample of 42 observations is used to estimate the population variance. The sample mean and sample standard deviation are calculated as 74.5 and 5.6, respectively. Assume that the population is normally distributed. a. Construct the 90% interval estimate for the population variance. (Round intermediate calculations to at least 4 decimal places and final answers to 2 decimal places.) b. Construct the 99% interval estimate for the population variance. (Round intermediate calculations to at least 4 decimal places and...
A random sample of 27 observations is used to estimate the population variance. The sample mean...
A random sample of 27 observations is used to estimate the population variance. The sample mean and sample standard deviation are calculated as 44 and 4.5, respectively. Assume that the population is normally distributed. (You may find it useful to reference the appropriate table: chi-square table or F table) a. Construct the 95% interval estimate for the population variance. (Round intermediate calculations to at least 4 decimal places and final answers to 2 decimal places.) b. Construct the 99% interval...
Given a population with a mean of µ = 100 and a variance σ2 = 13,...
Given a population with a mean of µ = 100 and a variance σ2 = 13, assume the central limit theorem applies when the sample size is n ≥ 25. A random sample of size n = 28 is obtained. What is the probability that 98.02 < x⎯⎯ < 99.08?
Given a population with a mean of µ = 100 and a variance σ2 = 14,...
Given a population with a mean of µ = 100 and a variance σ2 = 14, assume the central limit theorem applies when the sample size is n ≥ 25. A random sample of size n = 46 is obtained. What is the probability that 98.80 < x¯ < 100.92?
Given a population with a mean of μ= 103 and a variance of σ2 = 16,...
Given a population with a mean of μ= 103 and a variance of σ2 = 16, the central limit applies when the sample size n >_25. A random sample of size n = 25 is obtained. a. What are the mean and variance of the sampling distribution for the sample means? b. What is the probability that X- > 104 ? c. Whta is the probability that 102 < X < 104 ? d. What is the probability that X-...
Population has mean M and variance S2 , By Simple random sampling, get size n=10 sample....
Population has mean M and variance S2 , By Simple random sampling, get size n=10 sample. If Xbar is estimator of population mean, explain variance/bias/sampling error of estimator.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT