Question

In: Statistics and Probability

Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...

Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the 1975 lean, which was 2.9643 meters, appears in the table as 643. Only the last two digits of the year were entered into the computer.

Year 75 76 77 78 79 80 81 82 83 84 85 86 87
Lean 643 646 657 668 675 689 697 699 715 718 726 744 759

(a) What is the equation of the least-squares line? (Round your answers to three decimal places.)
y =  +  x

What percent of the variation in lean is explained by this line? (Round your answer to one decimal place.)
%

(b) Give a 99% confidence interval for the average rate of change (tenths of a millimeter per year) of the lean. (Round your answers to two decimal places.)
(  ,  )

Solutions

Expert Solution

(a) following data is given and we find the equation y=a+bx=629.62+9.35x

the R2 is 0.987, so 98.7 percent of the variation in lean is explained by this line

(b)

(1-alpha)*100% confidence interval for slope=b ±z(alpha/2,n-2)*SE(b)

99% confidence interval =9.35±t(0.01/2,11)*SE(b)=9.35±3.11*0.32=9.35±1.00=(8.35,10.35)

Year x Lean
75 1 643
76 2 646
77 3 657
78 4 668
79 5 675
80 6 689
81 7 697
82 8 699
83 9 715
84 10 718
85 11 726
86 12 744
87 13 759

followign regression anlaysis information has been generated using ms-excel

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.99364
R Square 0.98732
Adjusted R Square 0.986167
Standard Error 4.310849
Observations 13
ANOVA
df SS MS F Significance F
Regression 1 15916.51 15916.51 856.4897 8.73E-12
Residual 11 204.4176 18.58342
Total 12 16120.92
Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 629.6154 2.536281 248.2435 5.69E-22 624.0331 635.1977
X Variable 1 9.351648 0.319541 29.26585 8.73E-12 8.648343 10.054

Related Solutions

Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT