Question

In: Statistics and Probability

Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...

Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the 1975 lean, which was 2.9643 meters, appears in the table as 643. Only the last two digits of the year were entered into the computer.

Year 75 76 77 78 79 80 81 82 83 84 85 86 87
Lean 643 646 657 669 674 690 698 700 715 718 726 744

758

What is the equation of the least-squares line? Round answers to three decimal places

y = ____________ + _____________ x

What percent of the variation in lean is explained by this line? Round your answer to one decimal place

Give a 99% confidence interval for the average rate of change (tenths of a millimeter per year) of the lean. Round your answers to two decimal places

( ________, ____________)

Solutions

Expert Solution

Here we have data:

Year Lean
75 643
76 646
77 657
78 669
79 674
80 690
81 698
82 700
83 715
84 718
85 726
86 744
87 758

Here we are using Excel for calculation:

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.9938
R Square 0.9876
Adjusted R Square 0.9865
Standard Error 4.2475
Observations 13
ANOVA
df SS MS F Significance F
Regression 1 15785.8516 15785.8516 874.9765 7.77174E-12
Residual 11 198.4560 18.0415
Total 12 15984.3077
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0%
Intercept -59.137 25.5298 -2.3164 0.0408 -115.3282 -2.9466 -138.43 20.15
X Variable 1 9.313 0.3148 29.5800 0.0000 8.6202 10.0062 8.34 10.29

Equation of the least square line:

Y = -59.137 + 9.313X

99% Confidence interval

(-138.43, 20.15


Related Solutions

Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT