Question

In: Statistics and Probability

Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...

Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the 1975 lean, which was 2.9645 meters, appears in the table as 645. Only the last two digits of the year were entered into the computer.

Year 75 76 77 78 79 80 81 82 83 84 85 86 87
Lean 645 647 660 671 676 692 699 702 716 720 729 746 761

(a) Plot the data. Consider whether or not the trend in lean over time appears to be linear. (Do this on paper. Your instructor may ask you to turn in this graph.)

(b) What is the equation of the least-squares line? (Round your answers to three decimal places.)
y =  +  x

What percent of the variation in lean is explained by this line? (Round your answer to one decimal place.)
%

(c) Give a 99% confidence interval for the average rate of change (tenths of a millimeter per year) of the lean. (Round your answers to two decimal places.)
(  ,  )

Solutions

Expert Solution

a)

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.993778785
R Square 0.987596273
Adjusted R Square 0.986468661
Standard Error 4.267995339
Observations 13
ANOVA
df SS MS F Significance F
Regression 1 15953.93407 15953.93407 875.8302073 7.73064E-12
Residual 11 200.3736264 18.21578422
Total 12 16154.30769
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0%
Intercept -61.14285714 25.6528795 -2.38346955 0.036277907 -117.6044642 -4.681250092 -140.8157374 18.53002309
Year 9.362637363 0.316364863 29.59442865 7.73064E-12 8.666322995 10.05895173 8.380069311 10.34520541

b)

Lean = -61.14 + 9.36 * year

Y = -61.14 + 9.36 * X

c)

99% confidence interval for the average rate of change (tenths of a millimeter per year) of the lean

(8.38, 10.35)

Use regression in excel to get above solution (SUMMARY OUTPUT)


Related Solutions

Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT