Prove the following statements!
1. If A and B are sets then
(a) |A ∪ B| = |A| + |B| − |A ∩ B| and
(b) |A × B| = |A||B|.
2. If the function f : A→B is
(a) injective then |A| ≤ |B|.
(b) surjective then |A| ≥ |B|.
3. For each part below, there is a function f : R→R that is
(a) injective and surjective.
(b) injective but not surjective.
(c) surjective but not injective.
(d)...
For each of the following sets, prove that thay are convex sets
or not. Also graph the sets.
a) ? 1= {(?1 , ?2 ): ?1 ^2 + ?2^2 ≥ 1}
b)?2 = {(?1 ,?2 ): ?1 ^2 + ?2^ 2 = 1}
c)?3 = {(?1 , ?2 ): ?1 ^2 + ?2 ^2 ≥ 1}
How could you define operationally and measure the variables if
Hypothesis: H0: p=0 (there is no linear relationship between
playing video games and aggression). H1: p not equal to 0 (there is
linear relationship between playing video games and
aggression)?
1)Prove that the intersection of an arbitrary collection of
closed sets is closed.
2)Prove that the union of a finite collection of closed sets is
closed
Prove the following statements!
1. Let S = {0, 1, . . . , 23} and define f : Z→S by f(k) = r
when 24|(k−r). If g : S→S is defined by
(a) g(m) = f(7m) then g is injective and
(b) g(m) = f(15m) then g is not injective.
2. Let f : A→B and g : B→C be injective. Then g ◦f : A→C is
injective.
3. Let f : A→B and g : B→C be surjective....
Question 4 Prove that the following language is not regular. ? =
{ 0 ?1 ? | ?, ? ≥ 0, ? ≠ 2? + 1 }
Question 5 Prove that the following language is not regular. ? =
{ ? ∈ { 0, 1, 2} ∗ | #0 (?) + #1 (?) = #2 (?) } where #? (?)
denotes the number of occurrences of symbol a in string w.
Unless otherwise noted, all sets in this module are finite.
Prove the following statements...
1. If A and B are sets then (a) |A ∪ B| = |A| + |B| − |A ∩ B|
and (b) |A × B| = |A||B|.
2. If the function f : A→B is (a) injective then |A| ≤ |B|. (b)
surjective then |A| ≥ |B|.
3. For each part below, there is a function f : R→R that is (a)
injective and surjective. (b)...