Question

In: Advanced Math

Prove the following statements! 1. If A and B are sets then (a) |A ∪ B|...

Prove the following statements!

1. If A and B are sets then

(a) |A ∪ B| = |A| + |B| − |A ∩ B| and

(b) |A × B| = |A||B|.

2. If the function f : A→B is

(a) injective then |A| ≤ |B|.

(b) surjective then |A| ≥ |B|.

3. For each part below, there is a function f : R→R that is

(a) injective and surjective.

(b) injective but not surjective.

(c) surjective but not injective.

(d) neither injective nor surjective

Solutions

Expert Solution


Related Solutions

1) a) Prove that the union of two countable sets is countable. b) Prove that the...
1) a) Prove that the union of two countable sets is countable. b) Prove that the union of a finite collection of countable sets is countable.
Let A and B be finite sets. Prove the following: (a) |A∪B|=|A|+|B|−|A∩B| (b) |A × B|...
Let A and B be finite sets. Prove the following: (a) |A∪B|=|A|+|B|−|A∩B| (b) |A × B| = |A||B| (c) |{f : A → B}| = |B||A|
Unless otherwise noted, all sets in this module are finite. Prove the following statements... 1. If...
Unless otherwise noted, all sets in this module are finite. Prove the following statements... 1. If A and B are sets then (a) |A ∪ B| = |A| + |B| − |A ∩ B| and (b) |A × B| = |A||B|. 2. If the function f : A→B is (a) injective then |A| ≤ |B|. (b) surjective then |A| ≥ |B|. 3. For each part below, there is a function f : R→R that is (a) injective and surjective. (b)...
Unless otherwise noted, all sets in this module are finite. Prove the following statements... 1. Let...
Unless otherwise noted, all sets in this module are finite. Prove the following statements... 1. Let S = {0, 1, . . . , 23} and define f : Z→S by f(k) = r when 24|(k−r). If g : S→S is defined by (a) g(m) = f(7m) then g is injective and (b) g(m) = f(15m) then g is not injective. 2. Let f : A→B and g : B→C be injective. Then g ◦f : A→C is injective. 3....
Consider any two finite sets A and B. Prove that |A×B|=|A||B|
Consider any two finite sets A and B. Prove that |A×B|=|A||B|
Prove that for arbitrary sets A, B, C the following identities are true. Note that Euler...
Prove that for arbitrary sets A, B, C the following identities are true. Note that Euler Diagram is not a proof but can be useful for you to visualize! (A∩B)⊆(A∩C)∪(B∩C') Bonus question: A∪B∩A'∪C∪A∪B''= =(A∩B∩C)∪(A∩B'∩C)∪(A'∩B∩C)∪(A'∩B∩C')
prove or disppprove. Suppose A & B are sets. (1) A function f has an inverse...
prove or disppprove. Suppose A & B are sets. (1) A function f has an inverse iff f is a bijection. (2) An injective function f:A->A is surjective. (3) The composition of bijections is a bijection.
[Jordan Measure] Could you prove the following ? Prove that the sets Q ∩ [0, 1]...
[Jordan Measure] Could you prove the following ? Prove that the sets Q ∩ [0, 1] and [0, 1] \ Q are not Jordan measurable.
4: \textbf{Proof} Prove that if $A$ and $B$ are countable sets, then $A \cup B$ is...
4: \textbf{Proof} Prove that if $A$ and $B$ are countable sets, then $A \cup B$ is countable. 5: Use induction and problem 4 to prove that if $A_1, A_2, ..., A_m$ are each countable sets, then the union $A_1 \cup A_2 \cup ... \cup A_m$ is countable. #5 please
Prove the following using any method you like: Theorem. If A, B, C are sets, then...
Prove the following using any method you like: Theorem. If A, B, C are sets, then (A ∪ B) \ C = (A \ C) ∪ (B \C) and A ∪ (B \ C) = (A ∪ B) \ (C \ A)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT