In: Advanced Math
Let ?1=(1,0,1,0) ?2=(0,−1,1,−1) ?3=(1,1,1,1) be linearly independent vectors in ℝ4.
a. Apply the Gram-Schmidt algorithm to orthonormalise the vectors
{?1,?2,?3} of vectors {?1,?2,?3}.
b. Find a vector ?4 such that {?1,?2,?3,?4} is an orthonormal basis
for ℝ4 (where ℝ4 is the Euclidean space, that is, the
inner product is the dot product).