Question

In: Finance

A 20kW rated motor has an average loading of 75% of rated power and has an...

A 20kW rated motor has an average loading of 75% of rated power and has an efficiency of 80%. The motor has a peak loading of 100% of rated power. The motor operates 1000 hours a year. The cost of electricity is $0.10/kWh and $7/kW-month of demand. Assume the motor operates at periods of peak demand at the facility (i.e. the motor power impacts the billing demand). An energy efficiency upgrade reduces the average power consumed to an average loading of 50% of rated power and reduces the peak power to 75% of rated power, but increases the operating hours to 1500 hours per year. There is no change in the efficiency of the motor after the upgrade. The cost of the energy efficiency project is $10,000. What is the annual electricity cost of running the motor before and after the energy efficiency upgrade? What is the simple payback of the project?

Solutions

Expert Solution

Before Energy Efficiency upgrade
Peak Loading =75% of rated power= 20KW
Effeciency 80%
Power needed =20/0.8= 25 KW
Number of hours in a year 1000
Annual power consumption =25*1000 25000 KWh
Cost of electricity =25000*$0.10= $2,500
Demand =$7*25*12 $2,100
Total annual cost $4,600
After Energy Efficiency upgrade
Peak Loading =100% of rated power= 15KW (20*75%)
Effeciency 80%
Power needed =15/0.8= 18.75 KW
Number of hours in a year 1500
Annual power consumption =15*1500 22500 KWh
Cost of electricity =22500*$0.10= $2,250
Demand =$7*18.75*12 $1,575
Total annual cost $3,825
Annual Savings in cost=4600-3825= $775
Simple paybackin years=10000/775         12.90

Related Solutions

Problem: A PM DC motor has the following parameters: Rated Power 10 hp; Rated armature voltage...
Problem: A PM DC motor has the following parameters: Rated Power 10 hp; Rated armature voltage 230 V-DC; Rated RPM: 1800; Armature Resistance: 0.2 Ohm Armature Inductance: 0.005 H Inertia (motor plus mechanical load): 0.1 kgm^2; Viscous friction coefficient: 0.015 Nms 1. Compute the voltage constant of the motor. Also compute the rated current and rated torque of the motor (obtained at the rated RPM). If the motor is supplied by 230 V across the armature, and the only torque...
A 50-Hz, 440-V, 2 pole wye connected induction motor is rated at 75 kW. The equivalent...
A 50-Hz, 440-V, 2 pole wye connected induction motor is rated at 75 kW. The equivalent parameters are as follows: RS = 0.075 Ω RR’ = 0.065 Ω XS = XR’ = 0.17 Ω Xm = 7.2 Ω The losses associated with the machine are field and winding, miscellaneous and core loss with values of 1 kW, 150 W and 1.1 kW, respectively. For a slip of 4 %, determine a) The line current. (150.39  -23.08 A) b) The...
A 50-Hz, 440-V, 6 pole wye connected induction motor is rated at 75 kW. The equivalent...
A 50-Hz, 440-V, 6 pole wye connected induction motor is rated at 75 kW. The equivalent parameters are as follows: RS = 0.082 Ω; RR’ = 0.07 Ω; XS = 0.19 Ω; XR’ = 0.18 Ω; XM = 7.2 Ω The losses associated with the machine are field and winding, miscellaneous and core loss with values of 1.3 kW, 150 W and 1.4 kW, respectively. For a slip of 4 %, determine: a) The line current b) The stator power...
Assume the average home requires an electrical power of 1.2kW, an average life expectancy of 75...
Assume the average home requires an electrical power of 1.2kW, an average life expectancy of 75 years, and only power from nuclear energy. For such a homeowner, what would be the lifetime generation of vitrified high level waste (HLW) in kg and liters (assuming reprocessing and recycling of U and Pu). Recall from our notes and handouts for chapter 7, the vitrified waste containers in France hold the HLW equivalent of 1.5 fuel recycled assemblies with an energy production of...
Assume the average home requires an electrical power of 1kW, an average life expectancy of 75...
Assume the average home requires an electrical power of 1kW, an average life expectancy of 75 years, and only power from nuclear energy. For such a homeowner, what would be the lifetime generation of vitrified high level waste (HLW) in kg and liters. ( assuming reprocessing and recycling of U and Pu). Recalling that the vitrified waste containers in France hold the HLW equivalent of 1.5 recycled fuel assemblies with an energy production of 1 TWh (1E + 12 Wh).
Assume the average home requires an electrical power of 1.2kW, an average life expectancy of 75...
Assume the average home requires an electrical power of 1.2kW, an average life expectancy of 75 years, and only power from nuclear energy. For such a homeowner, what would be the lifetime generation of vitrified high level waste (HLW) in kg and liters (assuming reprocessing and recycling of U and Pu). the vitrified waste containers in France hold the HLW equivalent of 1.5 fuel recycled assemblies with an energy production of 1 TWh (1E+12 Wh). Compare this to some common...
Assume the average home requires an electrical power of 1.2kW, an average life expectancy of 75...
Assume the average home requires an electrical power of 1.2kW, an average life expectancy of 75 years, and only power from nuclear energy. For such a homeowner, what would be the lifetime generation of vitrified high level waste (HLW) in kg and liters (assuming reprocessing and recycling of U and Pu). the vitrified waste containers in France hold the HLW equivalent of 1.5 fuel recycled assemblies with an energy production of 1 TWh (1E+12 Wh). Compare this to some common...
A 400 V dc shunt motor has a rated armature current of 76 A at a...
A 400 V dc shunt motor has a rated armature current of 76 A at a speed of 1000 rpm. The armature resistance of the motor is 0.4ohm, the field resistance is 100 ohm, and the rotational losses are 0.9 kW. The load of the motor is bidirectional. Calculate the following: (a) No-load speed of the motor. (b) Motor speed, where the armature current is 60 A during regenerative braking. (c) Developed torque during regenerative braking. (d) Back electromotive force,...
A powerful bipolar permanent magnet stepper motor used for positioning a valve has a rated current...
A powerful bipolar permanent magnet stepper motor used for positioning a valve has a rated current of 13 A, a winding resistance of 60 mΩ, a winding inductance of 0.77 mH, a 0.16Nm detent torque, holding torque: 9.5 N.m, torque at 50 steps per second [sps]: 8 N.m. Its step rate is 200 steps per revolution, and the rotor inertia is 0.7x 10- 3 kg.m2. The motor is chopper-driven at 65 V and it develops a torque of 2.2 N.m...
A star-connected induction motor has the following rated parameters: Voltage UN = 400 V, current IN...
A star-connected induction motor has the following rated parameters: Voltage UN = 400 V, current IN = 8 A, frequency fN = 50 Hz, speed nN = 1480 rpm, power factor cos ijN = 0.8, efficiency ȘN = 0.9, magnetizing inductance Lm = 280 mH, stator leakage inductance LVı = 9 mH and rotor leakage inductance LUı = 14 mH. For the rated operating point of the motor, calculate the per-unit values for electric active power Pel, mechanical power Pmech,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT