In: Advanced Math
Euler’s Method Let’s get our hands dirty and actually use Euler’s method to estimate the value of y(2) where y is the solution to the initial value problem
y′=y−2x y(0) = 1
Recall that Euler’s method says: Approximate values for the solution of the initial value problem
y′=F(x, y),y(x0) =y0 with step size h, at xn=xn−1+h, are
yn=yn−1+hF(xn−1, yn−1)
Fill in the table for steps of size h= 0.2.
| n | xn | yn=yn-1+0.2F(xn-1,Yn-1 | y'=F(xn,yn) | 
| 0 | 0 | 1 | |
| 1 | 
 .2  | 
||
| 2 | .4 | ||
| 3 | |||
| 4 | |||
| 5 | |||
| 6 | |||
| 7 | |||
| 8 | |||
| 9 | |||
| 10 | 
Graph the portion of the approximate solution curve you found above. It should look like a lot of line segments. The first segment has been given on the grid below:
(c) Suppose f(x) is an exact solution to the initial value problem above. Describe, with justification, the behavior off(x) as x→∞. Hint: Graphing a slope field may be helpful for this.
h =
0.200000000000000
---------------------------------------------------------------------------------------------------------------
n      
tn         
y_Euler         
dy/dx     
----------------------------------------------------------------------------------------------------------------
0        0.000000    
    1.000000        
1.000000
1        0.200000    
    1.200000        
0.800000
2        0.400000    
    1.360000        
0.560000
3        0.600000    
    1.472000        
0.272000
4        0.800000    
    1.526400       
-0.073600
5        1.000000    
    1.511680       
-0.488320
6        1.200000    
    1.414016       
-0.985984
7        1.400000    
    1.216819       
-1.583181
8        1.600000    
    0.900183       
-2.299817
9        1.800000    
    0.440220       
-3.159780
10        2.000000    
   -0.191736       
-4.191736

Direction filreld plot

After solve ode we get solution y(x)=2(x+1)=e^x
so x tends to infinity y is infinity