Question

In: Advanced Math

Euler’s method Consider the initial-value problem y′ = −2y, y(0) = 1. The analytic solution is...

Euler’s method

Consider the initial-value problem y′ = −2y, y(0) = 1. The analytic solution is y(x) = e−2x . (a) Approximate y(0.1) using one step of Euler’s method. (b) Find a bound for the local truncation error in y1 . (c) Compare the error in y1 with your error bound. (d) Approximate y(0.1) using two steps of Euler’s method. (e) Verify that the global truncation error for Euler’s method is O(h) by comparing the errors in parts (a) and (d).

Solutions

Expert Solution


Related Solutions

Find the solution of the given initial value problem. 2y''+y'-4y=0 ; y(0)=0 y'(0)=1
Find the solution of the given initial value problem. 2y''+y'-4y=0 ; y(0)=0 y'(0)=1
find the solution of the given initial value problem. y′′−2y′−3y=3te^2t y(0)=1 y′(0)=0
find the solution of the given initial value problem. y′′−2y′−3y=3te^2t y(0)=1 y′(0)=0
find the solution of the given initial value problem 1. y''−2y'−3y=3te2t, y(0) =1, y'(0) =0 2....
find the solution of the given initial value problem 1. y''−2y'−3y=3te2t, y(0) =1, y'(0) =0 2.    y''+4y=3sin2t, y(0) =2, y'(0) =-1
Find the solution of the initial value problem y′′−2y′−3 y=15te2t, y(0)=2, y′(0)=0.
Find the solution of the initial value problem y′′−2y′−3 y=15te2t, y(0)=2, y′(0)=0.
Consider the initial-value problem y' = 2x − 3y + 1, y(1) = 7. The analytic...
Consider the initial-value problem y' = 2x − 3y + 1, y(1) = 7. The analytic solution is y(x) = 1/9 + 2/3 x + (56/9) e^(−3(x − 1)). (a) Find a formula involving c and h for the local truncation error in the nth step if Euler's method is used. (b) Find a bound for the local truncation error in each step if h = 0.1 is used to approximate y(1.5). (Proceed as in this example.) (c) Approximate y(1.5)...
solve the initial value problem Y" + 2Y' - Y = 0, Y(0)=0,Y'(0) = 2sqrt2
solve the initial value problem Y" + 2Y' - Y = 0, Y(0)=0,Y'(0) = 2sqrt2
Compute, by Euler’s method, an approximate solution to the following initial value problem for h =...
Compute, by Euler’s method, an approximate solution to the following initial value problem for h = 1/8 : y’ = t − y , y(0) = 2 ; y(t) = 3e^(−t) + t − 1 . Find the maximum error over [0, 1] interval.
Solve the initial value problem: y''+2y'+y = x^2 , y(0)=0 , y'(0) = 0
Solve the initial value problem: y''+2y'+y = x^2 , y(0)=0 , y'(0) = 0
Find the solution to the problem of initial value 2y'''' +3y'''--16''+15y'-- 4y=0 subjected to y(0)= --...
Find the solution to the problem of initial value 2y'''' +3y'''--16''+15y'-- 4y=0 subjected to y(0)= -- 2, y'(0)=6, y''(0)=3, y'''(0)=1/2
Use power series to solve the initial value problem x^2y''+xy'+x^2y=0, y(0)=1, y'(0)=0
Use power series to solve the initial value problem x^2y''+xy'+x^2y=0, y(0)=1, y'(0)=0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT