Question

In: Advanced Math

Compute, by Euler’s method, an approximate solution to the following initial value problem for h =...

Compute, by Euler’s method, an approximate solution to the following initial value problem for h = 1/8 : y’ = t − y , y(0) = 2 ; y(t) = 3e^(−t) + t − 1 . Find the maximum error over [0, 1] interval.

Solutions

Expert Solution


Related Solutions

Use eulers Method with step size h=.01 to approximate the solution to the initial value problem...
Use eulers Method with step size h=.01 to approximate the solution to the initial value problem y'=2x-y^2, y(6)=0 at the points x=6.1, 6.2, 6.3, 6.4, 6.5
use the method of order two to approximate the solution to the following initial value problem...
use the method of order two to approximate the solution to the following initial value problem y'=e^(t-y),0<=t<=1, y(0)=1, with h=0.5
Euler’s method Consider the initial-value problem y′ = −2y, y(0) = 1. The analytic solution is...
Euler’s method Consider the initial-value problem y′ = −2y, y(0) = 1. The analytic solution is y(x) = e−2x . (a) Approximate y(0.1) using one step of Euler’s method. (b) Find a bound for the local truncation error in y1 . (c) Compare the error in y1 with your error bound. (d) Approximate y(0.1) using two steps of Euler’s method. (e) Verify that the global truncation error for Euler’s method is O(h) by comparing the errors in parts (a) and...
Use Eulers method to find approximate values of the solution of the given initial value problem...
Use Eulers method to find approximate values of the solution of the given initial value problem at T=0.5 with h=0.1. 12. y'=y(3-ty) y(0)=0.5
Use power series approximations method to approximate the solution of the initial value problem: y"− (1+...
Use power series approximations method to approximate the solution of the initial value problem: y"− (1+ x) y = 0 y(0) = 1 y'(0) = 2 (Write all the terms up to the power ). x^4
Plot the Euler’s Method approximate solution on [0,1] for the differential equation y* = 1 +...
Plot the Euler’s Method approximate solution on [0,1] for the differential equation y* = 1 + y^2 and initial condition (a) y0 = 0 (b) y0 = 1, along with the exact solution (see Exercise 7). Use step sizes h = 0.1 and 0.05. The exact solution is y = tan(t + c)
Use ten steps in Euler’s method to determine an approximate solution for the differential equation y′...
Use ten steps in Euler’s method to determine an approximate solution for the differential equation y′ = x3, y(0) = 0, using a step size Δx = 0.1.
Use the method of Undetermined Coefficients to find the solution of the initial value value problem:...
Use the method of Undetermined Coefficients to find the solution of the initial value value problem: y'' + 8y' + 20y = 9cos(2t) - 18e-4t, y(0) = 5. y'(0) = 0
Determine the solution of the following initial boundary-value problem using the method of separation of Variables...
Determine the solution of the following initial boundary-value problem using the method of separation of Variables Uxx=4Utt 0<x<Pi t>0 U(x,0)=sinx 0<=x<Pi Ut(x,0)=x 0<=x<Pi U(0,t)=0 t>=0 U(pi,t)=0 t>=0
Calculate the Euler method approximation to the solution of the initial value problem at the given...
Calculate the Euler method approximation to the solution of the initial value problem at the given x-values. Compare your results to the exact solution at these x-values. y' = y+y^2; y(1) = -1, x = 1.2, 1.4, 1.6, 1.8
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT