In: Math
1 point) According to data from the Tobacco Institute Testing
Laboratory, a certain brand of cigarette contains an average of 1.4
milligrams of nicotine. An advocacy group questions this figure,
and commissions an independent test to see if the the mean nicotine
content is higher than the industry laboratory claims.
The test involved randomly selecting ?=15n=15 cigarettes, measuring
the nicotine content (in milligrams) of each cigarette. The data is
given below.
1.7,1.6,1.8,2.0,1.4,1.4,1.9,1.6,1.3,1.5,1.2,1.4,1.7,1.2,1.51.7,1.6,1.8,2.0,1.4,1.4,1.9,1.6,1.3,1.5,1.2,1.4,1.7,1.2,1.5
(a) Do the data follow an approximately Normal distribution? Use
alpha = 0.05. ? yes no
(b) Determine the ?P-value for this Normality test, to three
decimal places.
?=P=
(c) Choose the correct statistical hypotheses.
A.
?0:?⎯⎯⎯⎯⎯=1.4,??:?⎯⎯⎯⎯⎯≠1.4H0:X¯=1.4,HA:X¯≠1.4
B.
?0:?⎯⎯⎯⎯⎯>1.4,??:?⎯⎯⎯⎯⎯<1.4H0:X¯>1.4,HA:X¯<1.4
C.
?0:?⎯⎯⎯⎯⎯=1.4,??:?⎯⎯⎯⎯⎯<1.4H0:X¯=1.4,HA:X¯<1.4
D. ?0:?=1.4,??:?≠1.4H0:μ=1.4,HA:μ≠1.4
E.
?0:?>1.4,??:?<1.4H0:μ>1.4,HA:μ<1.4
F. ?0:?=1.4??:?>1.4H0:μ=1.4HA:μ>1.4
(d) Determine the value of the test statistic for this test, use
two decimals in your answer.
Test Statistic =
(e Determine the ?P-value for this test, to three decimal
places.
?=P=
(f) Based on the above calculations, we should ? reject
not reject the null hypothesis. Use alpha = 0.05