Question

In: Chemistry

The bond disssociation of O2 is 498kJ/mol (i.e., it requires 498 kJ to take one mole...

The bond disssociation of O2 is 498kJ/mol (i.e., it requires 498 kJ to take one mole of O2 molecules and break the bonds to make two moles of O atoms). What wavelength photon, in nm, would posess the minimum energy to break one O2 molecule into two O atoms?

Solutions

Expert Solution

energy require to dissociate 1 mole of O2 = 498 KJ = 498000 J

1 mole contain 6.022 1023 molecule hence, to dissociate 6.022 1023 molecule require energy = 498000 J

then to break 1 molecule of O2 require energy = 1 498000 / 6.022 1023 = 8.269678 10-19 J

we know equation

E = hc / where,

E = energy of photon required = 8.269678 10-19 J

h = Planck constant = 6.62610-34J s

c = velocity of light = 3.00108 m/s

= wavelength in meter = ?

we can wright above equation

= hc/E

Substitute value

= (6.62610-34)(3.00108) / (8.269678 10-19)

= 2.4037212 10-7 m

1m = 1 109 nm

then 2.4037212 10-7 m = 240.37 nm

240.37 nm wavelength of photon required to break one O2 molecule in two O atom


Related Solutions

Calculate (using bond energies) the heat of reaction (per mole of CO, in KJ/Mol) for the...
Calculate (using bond energies) the heat of reaction (per mole of CO, in KJ/Mol) for the combustion of CO into CO2. Balance and do not round final answer Calculate (using bond energies) the heat of reaction (per mole of C2H2 in KJ/Mol) for the combustion of C2H2 into CO2 and water. Balance and do not round final answer
Calculate the total binding energy in kJ per mole nuclide and in kJ/mol nucleons for the...
Calculate the total binding energy in kJ per mole nuclide and in kJ/mol nucleons for the following nuclides, using the data given below. Nuclide Total binding energy kJ/mol nuclide kJ/mol nucleons (a) 12 6 C (b) 17 8 O (c) 234 90 Th Particle or atom Mass (u) proton 1.00728 neutron 1.00866 electron 0.00055 12 6 C 12.00000 17 8 O 16.99913 234 90 Th 234.04360 1 u = 1.66054×10-27 kg
The reaction of CH3OH(g) with N2(g) to give HCN(g), NH3(g), and O2(g) requires 164 kJ/mol of...
The reaction of CH3OH(g) with N2(g) to give HCN(g), NH3(g), and O2(g) requires 164 kJ/mol of CH3OH(g). a) Write a balanced chemical equation for this reaction. Include the phases of all species in the reaction. b)Should the thermal energy involved be written as a reactant or as a product? c) How much heat is involved in the reaction of 70.0 g of CH3OH(g) with excess N2(g) to give HCN(g) and NH3(g) in this reaction?
Consider the following set of reactions: N2 + 2O2→N2O4 ,ΔH=−8 kJ/mol N2 + O2→2NO ,ΔH=180 kJ/mol...
Consider the following set of reactions: N2 + 2O2→N2O4 ,ΔH=−8 kJ/mol N2 + O2→2NO ,ΔH=180 kJ/mol The equations given in the problem introduction can be added together to give the following reaction: overall: N2O4→2NO + O2 However, one of them must be reversed, reaction 1: N2 + 2O2→N2O4 What is the enthalpy for reaction 1 reversed? reaction 1 reversed: N2O4→N2 + 2O2 Express your answer numerically in kilojoules per mole. What is the enthalpy for reaction 2?
Please show all work. 3. The dissociation of the HO-H bond in water requires 493 kJ/mol....
Please show all work. 3. The dissociation of the HO-H bond in water requires 493 kJ/mol. a) How much energy, in joules, is required to break the HO-H bond in a single water molecule? b) What wavelength of electromagnetic radiation would have the energy required to break a HO-H bond? c) In what region of the spectrum (X-ray, UV, Vis, IR, etc.) does this radiation appear?
If the bond energy for A2, B2, and A-B is 300, 200 and 100 kJ/mole, respectively,...
If the bond energy for A2, B2, and A-B is 300, 200 and 100 kJ/mole, respectively, the change in energy for the following reaction A2+B2=2A-B should be (in kJ): 500 300 -300 400 -400 Based on Coulomb’s law, when the K+ and Cl- ions are placed 10 nm apart, their interaction energy should be (in J): -2.31x10-19 -2.31x10-20 2.31x10-20 2.31x10-19 -2.31x10-18 Using the energy equation for the H atom, determine its energy when its principal quantum number n=∞ (in J):...
How many moles of Al2O3 is produced from 0.32 mol Al and 0.26 mole O2? How...
How many moles of Al2O3 is produced from 0.32 mol Al and 0.26 mole O2? How many moles of Al2O3 are formed from the reaction of 6.38 grams of O2 and 9.15 grams of Al? How many grams of Al2O3 are formed from the reaction of 8.32x10^20 molecules of O2 and 4.26x10^21 molecules of Al? use 4Al+3O2=2Al2O3 to help.
The bond dissociation energy of a typical C-Cl bond in a chlorofluorocarbon is approximately 330 kJ/mol....
The bond dissociation energy of a typical C-Cl bond in a chlorofluorocarbon is approximately 330 kJ/mol. (a)    Write the equation for the photodissociation of the chlorine atom from chlorotrifluoromethane. (2 pts) (b)    What range of wavelengths of photons is able to cause the reaction you have written in part (a)? (4 pts) (c)    Describe how the product of the reaction in part (a) leads to an increase in the decomposition of stratospheric ozone. Provide a reaction mechanism to support your answer. (4 pts)
At 25 C: PbO(s) ---> Pb(s) + ½ O2(g) dH (kJ/mol) -217.32 0 0 dS (J/mol...
At 25 C: PbO(s) ---> Pb(s) + ½ O2(g) dH (kJ/mol) -217.32 0 0 dS (J/mol K) 68.7 64.81 205.138 dG (kj/mol) -187.89 0 0 Calculate dH for the previous reaction. A. -98.68 kJ/mol B. 98.68 kJ/mol C. -217.32 kJ/mol D. 217.32 kJ/mol
The endergonic conversion of ADP to ATP requires more than 30 kJ/mol. The hydrolysis of phosphoenolpyruvate...
The endergonic conversion of ADP to ATP requires more than 30 kJ/mol. The hydrolysis of phosphoenolpyruvate to pyruvate drives the conversion of ADP to ATP. What must be true about this hydrolysis? 1. The hydrolysis reaction is more endergonic than the conversion of ADP is exergonic. 2. The hydrolysis reaction is less exergonic than the conversion of ADP is endergonic. 3.The hydrolysis reaction is more exergonic than the conversion of ADP is endergonic. 4.The hydrolysis reaction is more endergonic than...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT