Question

In: Chemistry

The reaction A(aq) → 2 B(aq) is a second order reaction with respect to A(aq). Its...

The reaction A(aq) → 2 B(aq) is a second order reaction with respect to A(aq). Its activation energy is 41.3 kJ/mol. When the concentration of A(aq) is 0.100 M and the temperature is 25.0oC, the rate of reaction is 0.333 M/s. What is the rate of reaction when we increase the concentration of A(aq) to 0.272 M and we raise the temperature to 54.9 oC?

Solutions

Expert Solution

Given that, given reaction is a second order reaction.

Therefore, rate law expression of this reaction at 25oC will be:

rate = K1.[A]2

Hence, rate constant at, T1 = 25oC = 298.15 K will be:

K1 = (rate) / ([A]2)

K1 = (0.333 M/s) / ([0.100]2)

K1 = 33.3 M-1s-1

Also we have, activation energy of reaction, Ea = 41.3 kJ/mol = 41300 J/mol

Hence, rate constant (K2) at, T2 = 54.9oC = 328.05 K will be:

Therefore, Rate of reaction at second condition will be:

----------- (**Answer**)

=============================================================

(in case of anything wrong/have any doubts, please reach out to me via comments. I will help you)


Related Solutions

(a) The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq). The...
(a) The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq). The concentration of A(aq) after 200.0 seconds of reaction is 0.960 M and the concentration of A(aq) after 1000.0 seconds of reaction is 0.738 M. What was the concentration of A(aq) after 661.0 seconds of reaction? (b) The reaction A(aq) → B(aq) + C(aq) is a first order reaction with respect to A(aq). The half-life of A(aq) is 74.5 s at 25.0oC. Its activation energy...
The reaction A(aq) ---> B(aq) + C(aq) is a first order reaction. The half-life of A(aq)...
The reaction A(aq) ---> B(aq) + C(aq) is a first order reaction. The half-life of A(aq) is 86.6 s at 25.0oC and its half-life is 66.2 s at 45.0oC. What is its half-life (in s) at 65.0oC?
What is the reaction order with respect to initiator concentration (e.g. first order, second order, etc.)...
What is the reaction order with respect to initiator concentration (e.g. first order, second order, etc.) for each of the following steps: a. Initiation b. Propagation c. What is the relationship between initiator concentration and critical chain length?
A student is studying a reaction between reactants A and B. the reaction is second order...
A student is studying a reaction between reactants A and B. the reaction is second order with respect to A, but zero order with respect to B. Explain in 5-6 sentences what this means. If the Concetration of A is tripled what will the effect be on the reaction rate? If the concentration of B is increased 10 times, what will the effect be on the reaction rate?
A student is studying a reaction between reactants A and B. the reaction is second order...
A student is studying a reaction between reactants A and B. the reaction is second order with respect to A, but zero order with respect to B. Explain in 5-6 sentences what this means. If the Concetration of A is tripled what will the effect be on the reaction rate? If the concentration of B is increased 10 times, what will the effect be on the reaction rate?
We have the reaction   2 A(aq) +B(aq) + 3 C(aq) ? 2 D(aq) + 2 E(aq)...
We have the reaction   2 A(aq) +B(aq) + 3 C(aq) ? 2 D(aq) + 2 E(aq) + 3F(aq) .   At 25oC, we start with a solution that is 0.977 M in A(aq), 0.655 M in B(aq), and 0.911 M in C(aq). There is no D(aq), E(aq), or F(aq) present. Equilibrium is established, and at equilibrium, the concentration of C(aq) is 0.677 M. What is the value of the equilibrium constant, K, for this reaction? What is the value of ?Go...
Consider the following reaction at 321 K: 2 A (aq) + 1 B (aq) → 2...
Consider the following reaction at 321 K: 2 A (aq) + 1 B (aq) → 2 C (aq) + 1 D (aq) An experiment was performed with the following intitial concentrations: [A]i = 1.33 M, [B]i = 2.05 M, [C]i = 0.25 M, [D]i = 0.29 M. The reaction was allowed to proceed until equilibrium was reached at which time it was determined that [A] = 0.51 M. What was the maximum amount of work that could have been performed...
The kinetics of the following second-order reaction were studied as a function of temperature: C2H5Br(aq)+OH−(aq)→C2H5OH(l)+Br−(aq) Temperature...
The kinetics of the following second-order reaction were studied as a function of temperature: C2H5Br(aq)+OH−(aq)→C2H5OH(l)+Br−(aq) Temperature (∘C) k (L/mol⋅s) 25 8.81×10−5 35 0.000285 45 0.000854 55 0.00239 65 0.00633 If a reaction mixture is 0.155 M in C2H5Br, and 0.260 M in OH−, what is the initial rate of the reaction at 90 ∘C?
Part A: Use the following data to determine the order with respect to reactant A in the reaction 3 A + 4 B → 2 C
Experiment    [A]      [B]   Initial Rate (M/s)         1         0.20    0.50        0.32         2         0.60    0.50        2.88         3         0.20    0.25        0.040 Part A: Use the following data to determine the order with respect to reactant A in the reaction 3 A + 4 B → 2 C Part B: Use the following data to determine the order with respect to reactant B in the reaction 3 A + 4 B → 2 C
Consider the following reaction at 215 K: 2 A (aq) + 1 B (aq) → 1...
Consider the following reaction at 215 K: 2 A (aq) + 1 B (aq) → 1 C (aq) + 1 D (aq) An experiment was performed with the following intitial concentrations: [A]i = 1.37 M, [B]i = 2.03 M, [C]i = 0.65 M, [D]i = 0.11 M. The reaction was allowed to proceed until equilibrium was reached at which time it was determined that [A] = 0.61 M. What was the maximum amount of work that could have been performed...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT