Question

In: Advanced Math

Let G = Z4XZ3XZ2 and consider the two cyclic subgroups H = h(0; 1; 1)i and...

Let G = Z4XZ3XZ2 and consider the two cyclic subgroups H = h(0; 1; 1)i and K = h(2; 1; 1)i of G. (a) Find all cosets (along with the elements they contain) to H and K, respectively. (b) Write down Cayley tables for the factor groups G=H and G=K, and classify them according to the Fundamental Theorem of Finite Abelian Groups.

Solutions

Expert Solution


Related Solutions

(1) Let G be a group and H, K be subgroups of G. (a) Show that...
(1) Let G be a group and H, K be subgroups of G. (a) Show that if H is a normal subgroup, then HK = {xy|x ? H, y ? K} is a subgroup of G. (b) Show that if H and K are both normal subgroups, then HK is also a normal subgroup. (c) Give an example of subgroups H and K such that HK is not a subgroup of G.
Let H and K be subgroups of a group G so that for all h in...
Let H and K be subgroups of a group G so that for all h in H and k in K there is a k' in K with hk = k'h. Proposition 2.3.2 shows that HK is a group. Show that K is a normal subgroup of HK.
Suppose G is a group and H and H are both subgroups of G. Let HK={hk,...
Suppose G is a group and H and H are both subgroups of G. Let HK={hk, h∈H and k ∈K} a.give a example such that |HK| not equal to |H| |K| b. give a example to show f :HK →H ⨯K given by f(hk) = (h,k) may not be well defined.
Let G be a group and H and K be normal subgroups of G. Prove that...
Let G be a group and H and K be normal subgroups of G. Prove that H ∩ K is a normal subgroup of G.
The question is: Let G be a finite group, H, K be normal subgroups of G,...
The question is: Let G be a finite group, H, K be normal subgroups of G, and H∩K is also a normal subgroup of G. Using Homomorphism theorem ( or First Isomorphism theorem) prove that G/(H∩K) is isomorphism to a subgroup of (G/H)×(G/K). And give a example of group G with normal subgroups H and K such that G/(H∩K) ≆ (G/H)×(G/K), with explanation. I was trying to find some solutions for the isomorphism proof part, but they all seems to...
Consider G = (Z12, +). Let H = {0, 3, 6, 9}. a. Show that H...
Consider G = (Z12, +). Let H = {0, 3, 6, 9}. a. Show that H is a subgroup of G. b. Find all the cosets of H in G and denote this set by G/H. [Note: If x ∈ G then H +12 [x]12 = {[h + x]12?? | [h]12 ∈ H} is the coset generated by x.] c. For H +12 [x]12, H +12 [y]12 ∈ G/H define (H+12[x]12)⊕(H+12[y]12) by(H+12 [x]12)⊕(H+12 [y]12)=H+12 [x+y]12. d. Show that ⊕ is...
Let the cyclic group {[0], [1], [2], ..., [n − 1]} be denoted by Z/nZ. Consider...
Let the cyclic group {[0], [1], [2], ..., [n − 1]} be denoted by Z/nZ. Consider the following statement: for every positive integer n and every x in Z/nZ, there exists y ∈ Z/nZ such that xy = [1]. (a) Write the negation of this statement. (b) Is the original statement true or false? Justify your answer.
SupposeG=〈a〉is a cyclic group of order 12. Find all of the proper subgroups of G, and...
SupposeG=〈a〉is a cyclic group of order 12. Find all of the proper subgroups of G, and list their elements. Find all the generators of each subgroup. Explain your reasoning.
Let G = Z4 ⊕ Z4, and H = {(0, 0), (2, 0), (0, 2), (2,...
Let G = Z4 ⊕ Z4, and H = {(0, 0), (2, 0), (0, 2), (2, 2)}, and K = (1, 2). Is G/H isomorphic to Z4 or Z2 ⊕ Z2? Is G/K isomorphic to Z4 or Z2 ⊕ Z2?
Let G be a cyclic group generated by an element a. a) Prove that if an...
Let G be a cyclic group generated by an element a. a) Prove that if an = e for some n ∈ Z, then G is finite. b) Prove that if G is an infinite cyclic group then it contains no nontrivial finite subgroups. (Hint: use part (a))
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT