Let G be a group and a be an element of G. Let φ:Z→G be a map
defined by φ(n) =a^{n} for all n∈Z. a)Show that φ is a group
homomorphism. b) Find the image ofφ, i.e.φ(Z), and prove that it is
a subgroup ofG.
Let G be a group, and let a ∈ G be a fixed element. Define a
function Φ : G → G by Φ(x) = ax−1a−1.
Prove that Φ is an isomorphism is and only if the group G is
abelian.
Let a be an element of a finite group G. The order of a is the
least power k such that ak = e.
Find the orders of following elements in S5
a. (1 2 3 )
b. (1 3 2 4)
c. (2 3) (1 4)
d. (1 2) (3 5 4)
Let (G,+) be an abelian group and U a subgroup of G. Prove that
G is the direct product of U and V (where V a subgroup of G) if
only if there is a homomorphism f : G → U with f|U =
IdU
Let G be a group. For each x ∈ G and a,b ∈ Z+
a) prove that xa+b = xaxb
b) prove that (xa)-1 = x-a
c) establish part a) for arbitrary integers a and b in Z
(positive, negative or zero)