Question

In: Advanced Math

Consider G = (Z12, +). Let H = {0, 3, 6, 9}. a. Show that H...

Consider G = (Z12, +). Let H = {0, 3, 6, 9}.

a. Show that H is a subgroup of G.

b. Find all the cosets of H in G and denote this set by G/H. [Note: If x ∈ G then H +12 [x]12 = {[h + x]12?? | [h]12 ∈ H} is the coset generated by x.]

c. For H +12 [x]12, H +12 [y]12 ∈ G/H define (H+12[x]12)⊕(H+12[y]12) by(H+12 [x]12)⊕(H+12 [y]12)=H+12 [x+y]12.

d. Show that ⊕ is well defined and construct the addition table for G/H with the operation ⊕.

Solutions

Expert Solution


Related Solutions

Let G = Z4XZ3XZ2 and consider the two cyclic subgroups H = h(0; 1; 1)i and...
Let G = Z4XZ3XZ2 and consider the two cyclic subgroups H = h(0; 1; 1)i and K = h(2; 1; 1)i of G. (a) Find all cosets (along with the elements they contain) to H and K, respectively. (b) Write down Cayley tables for the factor groups G=H and G=K, and classify them according to the Fundamental Theorem of Finite Abelian Groups.
4.- Show the solution: a.- Let G be a group, H a subgroup of G and...
4.- Show the solution: a.- Let G be a group, H a subgroup of G and a∈G. Prove that the coset aH has the same number of elements as H. b.- Prove that if G is a finite group and a∈G, then |a| divides |G|. Moreover, if |G| is prime then G is cyclic. c.- Prove that every group is isomorphic to a group of permutations. SUBJECT: Abstract Algebra (18,19,20)
(1) Let G be a group and H, K be subgroups of G. (a) Show that...
(1) Let G be a group and H, K be subgroups of G. (a) Show that if H is a normal subgroup, then HK = {xy|x ? H, y ? K} is a subgroup of G. (b) Show that if H and K are both normal subgroups, then HK is also a normal subgroup. (c) Give an example of subgroups H and K such that HK is not a subgroup of G.
Let G = Z4 ⊕ Z4, and H = {(0, 0), (2, 0), (0, 2), (2,...
Let G = Z4 ⊕ Z4, and H = {(0, 0), (2, 0), (0, 2), (2, 2)}, and K = (1, 2). Is G/H isomorphic to Z4 or Z2 ⊕ Z2? Is G/K isomorphic to Z4 or Z2 ⊕ Z2?
Let G = R\{0} and N = (0,∞). Show that G/N is isomorphic to the multiplicative...
Let G = R\{0} and N = (0,∞). Show that G/N is isomorphic to the multiplicative group {1, −1}.
9. Let G be a bipartite graph and r ∈ Z>0. Prove that if G is...
9. Let G be a bipartite graph and r ∈ Z>0. Prove that if G is r-regular, then G has a perfect matching.1 10. Let G be a simple graph. Prove that the connection relation in G is an equivalence relation on V (G)
5. (a) Let σ = (1 2 3 4 5 6) in S6. Show that G...
5. (a) Let σ = (1 2 3 4 5 6) in S6. Show that G = {ε, σ, σ^2, σ^3, σ^4, σ^5} is a group using the operation of S6. Is G abelian? How many elements τ of G satisfy τ^2 = ε? τ^3 = ε? ε is the identity permutation. (b) Show that (1 2) is not a product of 3-cycles. Must be written as a proof! (c) If a^4 = 1 and ab = b(a^2) in a...
Let G, H, K be groups. Prove that if G ≅ H and H ≅ K...
Let G, H, K be groups. Prove that if G ≅ H and H ≅ K then G ≅ K.
Let G be a finite group and H a subgroup of G. Let a be an...
Let G be a finite group and H a subgroup of G. Let a be an element of G and aH = {ah : h is an element of H} be a left coset of H. If b is an element of G as well and the intersection of aH bH is non-empty then aH and bH contain the same number of elements in G. Thus conclude that the number of elements in H, o(H), divides the number of elements...
Let G, H be groups and define the relation ∼= where G ∼= H if there...
Let G, H be groups and define the relation ∼= where G ∼= H if there is an isomorphism ϕ : G → H. (i) Show that the relation ∼= is an equivalence relation on the set of all groups. (ii) Give an example of two different groups that are related.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT