In: Statistics and Probability
Appendix Two: (Store experiences a rate of return of at least 20%? Y = yes, N = no)
N Y Y N N N N N N N N
Y N N N N Y N Y N N Y
Y N N N N N N N N Y N
N N N Y Y N N N N N N
N Y Y Y N N N Y N N N
Y N Y N N N N N N N Y
Total no of stores 66
Stores with Yes = 17 therefore with no will be 49
Let %
We are asked to check at 5% and 2% whether proportion differs from 15%
where = 15%
Test Statistic (T.S.)= =
T.S. =1.9985
Decision criteria : Reject if T.S. >
Critical region (We will use 2-tailed normal dist )
1)
at 5%
=1.96
Since 1.9985>1.96 therefore T.S.>
Conclusion: We reject at 5% level of significance and conclude that proportion of stores with at least 20% rate of return are is not 15%.
2)
at 2%
=2.1701
Since 1.9985<2.1701 therefore T.S. <
Conclusion: We do not reject at 2% level of significance and conclude that proportion of stores with at least 20% rate of return are is 15%.
We get two different results due to different levels of significance. Hypotheses testing is done to check whether at a given level of significance the value of (for binomial) can be used as the population parameter or not. The level is also used to calculate the confidence intervals (range of values that the parameter can take). Lower the level stricter the test(strong evidence is required to reject null hypo) and so we might end up with not rejecting the null hypo. Vice versa with higher level.
Please let me know if you have any doubts by mentioning them in the comments section.