Question

In: Advanced Math

A sequence is just an infinite list of numbers (say real numbers, we often denote these...

A sequence is just an infinite list of numbers (say real numbers, we often denote these by a0,a1,a2,a3,a4,.....,ak,..... so that ak denotes the k-th term in the sequence. It is not hard to see that the set of all sequences, which we will call S, is a vector space.

a) Consider the subset, F, of all sequences, S, which satisfy: ∀k ≥ 2,a(sub)k = a(sub)k−1 + a(sub)k−2. Prove that F is a vector subspace of S.

b) Prove that if 10,a1,a2,a3,.... is a sequence if F for which a0=a1=0 then the sequence is the zero sequence, that is ∀k ≥ 0,a(sub)k = 0

c) Prove that the vector space F has dimension at most 2.

d) Prove that the sequences given by x(sub)k = ((1+root(5))/2)^k and y(sub)k = ((1-root(5))/2)^k are both elements in F and are linearly independent.

e) Consider the sequence defined recursively by a0=0, a1=1 ∀k > 1; ak = ak−1 + ak−2 , express this sequence an as a linear combination of xn and yn.

Solutions

Expert Solution


Related Solutions

We say that an infinite sequence a0,a1,a2,a3,… of real numbers has the limit L if for...
We say that an infinite sequence a0,a1,a2,a3,… of real numbers has the limit L if for every strictly positive number ε, there is a natural number n such that all the elements an,an+1,an+2,… are within distance ε of the value L. In this case, we write lim a = L. Express the condition that lim a = L as a formula of predicate logic. Your formula may use typical mathematical functions like + and absolute value and mathematical relations like...
Given an array A of n distinct real numbers, we say that a pair of numbers...
Given an array A of n distinct real numbers, we say that a pair of numbers i, j ∈ {0, . . . , n−1} form an inversion of A if i < j and A[i] > A[j]. Let inv(A) = {(i, j) | i < j and A[i] > A[j]}. Answer the following: (a) How small can the number of inversions be? Give an example of an array of length n with the smallest possible number of inversions. (b)...
Let A be a set of real numbers. We say that A is an open set...
Let A be a set of real numbers. We say that A is an open set if for every x0 ∈ A there is some δ > 0 (which might depend on x0) such that (x0 − δ, x0 + δ) ⊆ A. Show that a set B of real numbers is closed if and only if B is the complement of some open set A
The Fibonacci sequence is an infinite sequence of numbers that have important consequences for theoretical mathematics...
The Fibonacci sequence is an infinite sequence of numbers that have important consequences for theoretical mathematics and applications to arrangement of flower petals, population growth of rabbits, and genetics. For each natural number n ≥ 1, the nth Fibonacci number fn is defined inductively by f1 = 1, f2 = 2, and fn+2 = fn+1 + fn (a) Compute the first 8 Fibonacci numbers f1, · · · , f8. (b) Show that for all natural numbers n, if α...
Let Rx denote the group of nonzero real numbers under multiplication and let R+ denote the...
Let Rx denote the group of nonzero real numbers under multiplication and let R+ denote the group of positive real numbers under multiplication. Let H be the subgroup {1, −1} of Rx. Prove that Rx ≈ R+ ⊕ H.
Consider an infinite sequence of positions 1, 2, 3, . . . and suppose we have...
Consider an infinite sequence of positions 1, 2, 3, . . . and suppose we have a stone at position 1 and another stone at position 2. In each step, we choose one of the stones and move it according to the following rule: Say we decide to move the stone at position i; if the other stone is not at any of the positions i + 1, i + 2, . . . , 2i, then it goes to...
Given an array A of n distinct numbers, we say that a pair of numbers i,...
Given an array A of n distinct numbers, we say that a pair of numbers i, j ∈ {0, . . . , n − 1} form an inversion of A if i < j and A[i] > A[j]. Let inv(A) = {(i, j) | i < j and A[i] > A[j]}. Define the Inversion problem as follows: • Input: an array A consisting of distinct numbers. • Output: the number of inversions of A, i.e. |inv(A)|. Answer the following:...
E.C. 2. (10 pts.) Suppose that (sn) is a sequence of real numbers such that sn...
E.C. 2. (10 pts.) Suppose that (sn) is a sequence of real numbers such that sn ≥ 0 for all n ∈ N. (a) Show that the set of subsequential limits of S satisfies S ⊆ [0,∞) ∪ {+∞}. (b) Is it possible for S = [0,∞) ? (Hint: apply Theorem 11.9.) Legible handwriting is a must
Company spokespeople are often heard to say, "We have to be in that market". What is...
Company spokespeople are often heard to say, "We have to be in that market". What is a likely explanation for this statement if the market is (a) China; (b) Germany; (c) Brazil; (d) Japan; (e) the United States? I’m 350 words, Give examples of products or services.
Consider an infinite sequence of independent experiments, where in each experiment we take k balls, labeled...
Consider an infinite sequence of independent experiments, where in each experiment we take k balls, labeled 1 to k, and randomly place them into k slots, also labeled 1 to k, so that there is exactly one ball in each slot. For the nth experiment, let Xn be the number of balls whose label matches the slot label of the slot into which it is placed. So X1, X2, . . . is an infinite sequence of independent and identically...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT