Question

In: Math

15. a. Find the unit tangent vector T(1) at time t=1 for the space curve r(t)=〈t3...

15.

a. Find the unit tangent vector T(1) at time t=1 for the space curve r(t)=〈t3 +3t, t2 +1, 3t+4〉.

b. Compute the length of the space curve r(t) = 〈sin t, t, cos t〉 with 0 ≤ t ≤ 6.

Solutions

Expert Solution


Related Solutions

compute the unit tangent vector T and the principal normal unit vector N of the space...
compute the unit tangent vector T and the principal normal unit vector N of the space curve R(t)=<2t, t^2, 1/3t^3> at the point when t=1. Then find its length over the domain [0,2]
Find T(t), N(t), aT, and aN at the given time t for the space curve r(t)....
Find T(t), N(t), aT, and aN at the given time t for the space curve r(t). [Hint: Find a(t), T(t), aT, and aN. Solve for N in the equation a(t)=aTT+aNN. (If an answer is undefined, enter UNDEFINED.) Function    Time r(t)=9ti-tj+(t^2)k t=-1 T(-1)= N(-1)= aT= aN=
Consider the following vector function. r(t) =<3t, 1/2 t2, t2> (a) Find the unit tangent and...
Consider the following vector function. r(t) =<3t, 1/2 t2, t2> (a) Find the unit tangent and unit normal vectors T(t) and N(t). (b). Find the curvature k(t).
(1 point) For the given position vectors r(t)r(t) compute the unit tangent vector T(t)T(t) for the...
(1 point) For the given position vectors r(t)r(t) compute the unit tangent vector T(t)T(t) for the given value of tt . A) Let r(t)=〈cos5t,sin5t〉 Then T(π4)〈 B) Let r(t)=〈t^2,t^3〉 Then T(4)=〈 C) Let r(t)=e^(5t)i+e^(−4t)j+tk Then T(−5)=
Find the slope of the tangent line to the polar curve r=1-2sint at t=pi/3.
Find the slope of the tangent line to the polar curve r=1-2sint at t=pi/3.
Show the complete solution. Determine the unit tangent vector (T), the unit normal vector (N), and...
Show the complete solution. Determine the unit tangent vector (T), the unit normal vector (N), and the curvature of ?(?) = 2? ? + ?^2 ? – 1/3 ?^3 k at t = 1.
FOR THE PARAMETRIZED PATH r(t)= e^tcos(πt)i+e^tsin(πt)j+e^tk a) find the velocity vector, the unit tangent vector and...
FOR THE PARAMETRIZED PATH r(t)= e^tcos(πt)i+e^tsin(πt)j+e^tk a) find the velocity vector, the unit tangent vector and the arc lenght between t=0 and t=1 b) find a point where the path given by r(t) intersects the plane x-y=0 and determine the angle of intersection between the tangent vector to the curve and the normal vector to the plane.
Find the point of intersection of the tangent lines to the curve r(t) = 5 sin(πt),...
Find the point of intersection of the tangent lines to the curve r(t) = 5 sin(πt), 2 sin(πt), 6 cos(πt) at the points where t = 0 and t = 0.5. (x, y, z) =
Find the slope of the tangent line to the curve r = 1 + cos(θ) at...
Find the slope of the tangent line to the curve r = 1 + cos(θ) at θ =π/4. Note, you do NOT need to find the equation of the tangent line.
Find the curvature of the curve Vector r(t)= costi + costj -3sintk at the point (1,1,0)
Find the curvature of the curve Vector r(t)= costi + costj -3sintk at the point (1,1,0)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT