Question

In: Economics

1. Two firms compete in Cournot competition. Inverse demand in the market is given by P...

1. Two firms compete in Cournot competition. Inverse demand in the market is given by P = 1500 − 3 Q and each firm has constant marginal cost c = 420.

a) Assuming there are no fixed costs, find the Cournot equilibrium market price and quantities produced by each firm. (20 points)

b) Now suppose that each firm faces a non-sunk fixed cost of 20,000 if they produce at all. Would the firms still want to produce the amounts you found in part a? (5 points)

c) Now suppose that each firm faces a non-sunk fixed cost of 50,000 if they produce at all. Suppose that firm 1 is producing 180 units of output. Taking firm 1's level of output as given, would it be worthwhile for firm 2 to enter the market if they produce their best response level of output? (5 points)

d) Is it worthwhile for firm 1 to stay in the market, given the fixed cost of 50,000, if firm 2 produces zero? (5 points) Hint: 180 is the optimal monopoly output in this market.

Solutions

Expert Solution

i hope this would help you...if you like the work please appreciate thank you !


Related Solutions

Consider two identical firms in a Cournot competition. The market demand is P = a –...
Consider two identical firms in a Cournot competition. The market demand is P = a – bQ. TC1 = cq1 = TC2 = cq2 . Find the profit function of firm 1. Maximize the profit function to find the reaction function of firm 1. Solve for the Cournot-Nash Equilibrium. Carefully discuss how the slope of the demand curve affects outputs and price.
Two firms compete in a market with inverse demand P(Q) = a − Q, where the...
Two firms compete in a market with inverse demand P(Q) = a − Q, where the aggregate quantity is Q = q1 + q2. The profit of firm i ∈ {1, 2} is πi(q1, q2) = P(Q)qi − cqi , where c is the constant marginal cost, with a > c > 0. The timing of the game is: (1) firm 1 chooses its quantity q1 ≥ 0; (2) firm 2 observes q1 and then chooses its quantity q2 ≥...
Two firms operate in a Cournot duopoly and face an inverse demand curve given by P...
Two firms operate in a Cournot duopoly and face an inverse demand curve given by P = 200 - 2Q, where Q=Q1+Q2 If each firm has a cost function given by C(Q) = 20Q, how much output will each firm produce at the Cournot equilibrium? a. Firm 1 produces 45, Firm 2 produces 45. b. Firm 1 produces 30, Firm 2 produces 30 c. Firm 1 produces 45, Firm 2 produces 22.5 d. None of the above.
Two firms compete as a Stackellberg duopoly. The inverse market demand function they face is P...
Two firms compete as a Stackellberg duopoly. The inverse market demand function they face is P = 65 – 3Q. The cost function for each firm is C(Q) = 11Q. The outputs of the two firms are
Two firms compete in a homogeneous product market where the inverse demand function is P =...
Two firms compete in a homogeneous product market where the inverse demand function is P = 10 -2Q (quantity is measured in millions). Firm 1 has been in business for one year, while Firm 2 just recently entered the market. Each firm has a legal obligation to pay one year’s rent of $0.5 million regardless of its production decision. Firm 1’s marginal cost is $2, and Firm 2’s marginal cost is $6. The current market price is $8 and was...
Two firms compete as a Stackelberg duopoly. The inverse market demand function they face is P...
Two firms compete as a Stackelberg duopoly. The inverse market demand function they face is P = 65 – 3Q. The cost function for each firm is C(Q) = 11Q. The outputs of the two firms are QL = 9, QF = 4.5 QL = 9, QF = 10.5 QL = 6, QF = 3 QL = 4, QF = 2 Please help/ explain. Thank you
Two firms compete in a market to sell a homogeneous product with inverse demand function P...
Two firms compete in a market to sell a homogeneous product with inverse demand function P = 600 − 3Q. Each firm produces at a constant marginal cost of $300 and has no fixed costs. Use this information to compare the output levels and profits in settings characterized by Cournot, Stackelberg, Bertrand, and collusive behavior.
Two firms compete in a homogeneous product market where the inverse demand function is P =...
Two firms compete in a homogeneous product market where the inverse demand function is P = 20 -5Q (quantity is measured in millions). Firm 1 has been in business for one year, while Firm 2 just recently entered the market. Each firm has a legal obligation to pay one year’s rent of $1 million regardless of its production decision. Firm 1’s marginal cost is $2, and Firm 2’s marginal cost is $10. The current market price is $15 and was...
Two firms compete in a market to sell a homogeneous product with inverse demand function P...
Two firms compete in a market to sell a homogeneous product with inverse demand function P = 400 – 2Q. Each firm produces at a constant marginal cost of $50 and has no fixed costs -- both firms have a cost function C(Q) = 50Q. If the market is defined as a Bertrand Oligopoly, what is the market price? Refer to the information above. What is the total amount of Q produced in this market? How much does firm 1...
a.) Two identical firms compete as a Cournot duopoly. The market demand is P=100-2Q, where Q...
a.) Two identical firms compete as a Cournot duopoly. The market demand is P=100-2Q, where Q stands for the combined output of the two firms, Q=q1 +q2. The marginal cost for each firm is 4. Derive the best-response functions for these firms expressing what q1 and q2 should be. b.) Continuing from the previous question, identify the price and quantity that will prevail in the Cournot duopoly market c.) Now suppose two identical firms compete as a Bertrand duopoly. The...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT