In: Chemistry
EX3
A solution contains 2.2x10-3M in CU2+ and 0.33M in LiCN. If the Kf for Cu(CN)42-- is 1.0x1025, how much copper ion remains at equilibrium?
[Cu2+] = 2.07×10-26M
Explanation
Consider the complete reaction of the formation of Cu(CN)42-
Cu2+(aq) + 4CN-(aq) --------> Cu(CN)42-(aq)
Stoichiometrically, 1mole of Cu2+ reacts with 4moles of CN-
0.0022M Cu2+ moles of reacts with 0.0088M of CN- to produce 0.0022M of CN-
remaining concentration of CN- = 0.33M - 0.0088M = 0.3212M
Now, consider the dissociation equillibrium of Cu(CN)42-
Cu(CN)42-(aq) <-------> Cu2+(aq) + 4CN-(aq)
Kd = [Cu2+] [CN-]4/ [Cu(CN)42-]
Kd = 1/Kf = 1/(1.0×1025) = 1.0 ×10-25
Initial concentration
[Cu(CN)42-] = 0.0022M
[Cu2+] = 0
[CN-] = 0.3212
Change in concentration
[Cu(CN)42-] = -x
[Cu2+] = +x
[Cu(CN)42-] = +4x
equillibrium concentration
[Cu(CN)42-] = 0.0022 - x
[Cu2+] = x
[CN-]= 0.3212 + 4x
so,
x(0.3212 + 4x)4 / ( 0.0022 -x) = 1.0 ×1025
we can assume 0.3212 + 4x = 0.3212 and 0.0022 - x = 0.0022 because x is small value
x(0.3212)4/0.0022 = 1.0 ×10-25
x = 2.07×10-26
Therefore,
at equillibrium
[Cu2+] = 2.07×10-26M