In: Chemistry
A solution contains 2.2x10^-3 M Cu2+ and 0.33 M LiCN. If the Kf for Cu(CN)4^2- is 1.0x10^25, how much copper ion remains at equilibrium?
2.07×10-26M
Explanation
Consider thevcomplete formation of Cu(CN)42-
Cu2+(aq) + 4CN-(aq) --------> Cu(CN)42-(aq)
stoichiometrically, 1mole of Cu2+ reacts with 4moles of CN- to give 1mole of Cu(CN)42-
0.0022M of Cu2+ reacts with 0.0088M of CN- to give 0.0022M of Cu(CN)42-
Remaining moles of CN- = 0.33M - 0.0088M = 0.3212M
Now, consider the dissociation equillibrium of Cu(CN)42-
Cu(CN)42-(aq) <-------> Cu2+(aq) + 4CN-(aq)
Kd= [Cu2+][CN-]4/[Cu(CN)42-]
Kd = 1/Kf
Kd = 1/1.0 ×1025
Kd = 1.0 ×10-25
Initial concentration
[Cu(CN)42-] = 0.0022
[Cu2+] = 0
[CN-] = 0.3212
change in concentration
[Cu(CN)42-] = - x
[Cu2+] = +x
[CN-] = +4x
Equillibrium concentration
[Cu(CN)42-] = 0.0022 - x
[Cu2+] = x
[CN-] = 0.3212 + 4x
so,
x(0.3212 +4x)4/(0.0022 - x) = 1.0 ×10-25
we can assume , 0.3212 + 4x = 0.3212 and 0.0022 - x = 0.0022 because x is small value
x(0.3212)4/0.0022 = 1.0 ×10-25
x 4.838 = 1.0×10-25
x = 2.07 ×10-26
Therefore,
equillibrium concentration of Cu2+ = 2.07×10-26M