Question

In: Chemistry

The complex ion Cu(NH3)42 is formed in a solution made of 0.0400 M Cu(NO3)2 and 0.400...

The complex ion Cu(NH3)42 is formed in a solution made of 0.0400 M Cu(NO3)2 and 0.400 M NH3. What are the concentrations of Cu2 , NH3, and Cu(NH3)42 at equilibrium? The formation constant*, Kf, of Cu(NH3)42 is 1.70 × 1013.

Solutions

Expert Solution

Cu^2+(aq) + 4NH3(aq) <---> Cu(NH3)4^2+(aq)

Kf, of Cu(NH3)42 is 1.70 × 10^13

Cu2+             + 4 NH3 -------> [Cu(NH3)42+]

I                       0.0400             0.400                      0.0
c                  - 0.0400            - (4*0.400)                         0.0 400

E                      0                                  0.24               0.0400

Thus at equilibrium concentration of [Cu2+]= 0

                                    Cu2+ +        4 NH3 <--------> [Cu(NH3)4 2+]
I                                   0                      0. 24                       0.04
c                                  +x                      +4x                       -x
E                                  x                 0.24 +4x                   0.04-x

Kf= [Cu(NH3)4 2+]   / [Cu2+][ NH3]^4


1.70 x 10^13 = 0.04-x / x ( 0.24+4x)^4

1.70 x 10^13 = 0.04/ x ( 0.24)^4 = 12.06/x

x =7.09* x 10^-13M

[Cu2+]= 7.09 x 10^-13 M

[NH3]= 0.24 +4x = 0.24

Cu(NH3)4 2+]   = 0.04-x = 0.03999 or 0.04


Related Solutions

The complex ion Cu(NH3)42 is formed in a solution made of 0.0400 M Cu(NO3)2 and 0.500...
The complex ion Cu(NH3)42 is formed in a solution made of 0.0400 M Cu(NO3)2 and 0.500 M NH3. What are the concentrations of Cu2 , NH3, and Cu(NH3)42 at equilibrium? The formation constant*, Kf, of Cu(NH3)42 is 1.70 × 1013.
The complex ion Cu(NH3)42 is formed in a solution made of 0.0200 M Cu(NO3)2 and 0.400...
The complex ion Cu(NH3)42 is formed in a solution made of 0.0200 M Cu(NO3)2 and 0.400 M NH3. What are the concentrations of Cu2 , NH3, and Cu(NH3)42 at equilibrium? The formation constant*, Kf, of Cu(NH3)42 is 1.70 × 1013.
In an excess of NH3(aq), Cu2+ ion forms a deep blue complex ion, Cu(NH3)42+, which has...
In an excess of NH3(aq), Cu2+ ion forms a deep blue complex ion, Cu(NH3)42+, which has a formation constant Kf=5.6×1011. Calculate the concentration of Cu2+ in a solution prepared by adding 5.5×10−3mol of CuSO4 to 0.510 L of 0.39 M NH3.
In an excess of NH3(aq), Cu2+ ion forms a deep blue complex ion, Cu(NH3)42+, which has...
In an excess of NH3(aq), Cu2+ ion forms a deep blue complex ion, Cu(NH3)42+, which has a formation constant Kf=5.6×1011. Calculate the concentration of Cu2+ in a solution prepared by adding 4.6×10−3mol of CuSO4 to 0.550 L of 0.37 M NH3. Express your answer using two significant figures.
In an excess of NH3(aq), Cu2+ ion forms a deep blue complex ion, Cu(NH3)42+, which has...
In an excess of NH3(aq), Cu2+ ion forms a deep blue complex ion, Cu(NH3)42+, which has a formation constant Kf=5.6×1011. Calculate the concentration of Cu2+ in a solution prepared by adding 4.6×10−3mol of CuSO4 to 0.480 L of 0.45 M NH3. Express your answer using two significant figures. I am messing up in the steps somewhere and not sure where. Please show work so I can figure out where. TIA
In an excess of NH3(aq), Cu2+ ion forms a deep blue complex ion, Cu(NH3)42+, which has...
In an excess of NH3(aq), Cu2+ ion forms a deep blue complex ion, Cu(NH3)42+, which has a formation constant Kf=5.6×1011. Calculate the concentration of Cu2+ in a solution prepared by adding 4.5×10−3mol of CuSO4 to 0.550 L of 0.40 M NH3. Express your answer using two significant figures.
Calculate the equilibrium concentrations of NH3, Cu2+, [Cu(NH3)]2+, [Cu(NH3)2]2+, [Cu(NH3)3]2+, and [Cu(NH3)4]2+ in a solution made...
Calculate the equilibrium concentrations of NH3, Cu2+, [Cu(NH3)]2+, [Cu(NH3)2]2+, [Cu(NH3)3]2+, and [Cu(NH3)4]2+ in a solution made by mixing 500.0 mL of 3.00 M NH3 with 500.0 mL of 2.00 x 10-3 M Cu(NO3)2. The sequential equilibria are Cu2+ (aq) + NH3(aq) ⇐⇒ [Cu(NH3)]2+ (aq) K1 = 1.86 x 104 [Cu(NH3)]2+ (aq) + NH3(aq) ⇐⇒ [Cu(NH3)2]2+ (aq) K2 = 3.88 x 103 [Cu(NH3)2]2+ (aq) + NH3(aq) ⇐⇒ [Cu(NH3)3]2+ (aq) K3 = 1.00 x 103 [Cu(NH3)3]2+ (aq) + NH3(aq) ⇐⇒ [Cu(NH3)4]2+ (aq)...
A solution is made that is 1.1×10−3 M in Zn(NO3)2 and 0.140 M in NH3. Part...
A solution is made that is 1.1×10−3 M in Zn(NO3)2 and 0.140 M in NH3. Part A After the solution reaches equilibrium, what concentration of Zn2+(aq) remains? Express your answer using two significant figures.
Name the complex ion [Cu(NH3)2(H2O)4]2+. The oxidation number of copper is +2.
Name the complex ion [Cu(NH3)2(H2O)4]2+. The oxidation number of copper is +2.
A solution is made of 1.1 x 10-3M in Zn(NO3)2 and 0.150 M in NH3. After...
A solution is made of 1.1 x 10-3M in Zn(NO3)2 and 0.150 M in NH3. After the solution reaches equilibrium, what concentration of Zn2+(aq) remains? Kf (Zn(NH3)42+) = 2.8 x 109
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT