Question

In: Electrical Engineering

matlab code to calculate cost (min cost) of generators for 30 bus IEEE.

matlab code to calculate cost (min cost) of generators for 30 bus IEEE.

Solutions

Expert Solution

%% General Program For Calculating min cost by using newton rapson model
% Enter the busdata, and Loaddata in mention form
% Bus data (Bus   Bus Vol   Vol   Generating   Load   Reactive Power limit
%    no type Mag(pu) angle Pg QG Pl Ql Qmax Qmin   

% Load Data(From To R X B Tap
% Bus Bus (pu) (pu) (pu) Ratio)

clc
clear all
%% Bus data Bus type 1(slack Bus),type2(PV_Bus Bus), type3(PQ_Bus Bus)
tic
       % Bus   Bus Vol   Vol   Generating   Load   Reactive Power limit
% no type Mag angle Pg QG Pl Ql Qmax Qmin   
busdata= [ 1 1 1.06 0 0 0 0 0 0 0;
2 2 1.043 0 40 50.0 21.7 12.7 -40 50;
3 3 1.0 0 0 0 2.4 1.2 0 0;
4 3 1.06 0 0 0 7.6 1.6 0 0;
5 2 1.01 0 0 37.0 94.2 19.0 -40 40;
6 3 1.0 0 0 0 0.0 0.0 0 0;
7 3 1.0 0 0 0 22.8 10.9 0 0;
8 2 1.01 0 0 37.3 30.0 30.0 -10 40;
9 3 1.0 0 0 0 0.0 0.0 0 0;
10 3 1.0 0 0 19.0 5.8 2.0 0 0;
11 2 1.082 0 0 16.2 0.0 0.0 -6 24;
12 3 1.0 0 0 0 11.2 7.5 0 0;
13 2 1.071 0 0 10.6 0.0 0.0 -6 24;
14 3 1.0 0 0 0 6.2 1.6 0 0;
15 3 1.0 0 0 0 8.2 2.5 0 0;
16 3 1.0 0 0 0 3.5 1.8 0 0;
17 3 1.0 0 0 0 9.0 5.8 0 0;
18 3 1.0 0 0 0 3.2 0.9 0 0;
19 3 1.0 0 0 0 9.5 3.4 0 0;
20 3 1.0 0 0 0 2.2 0.7 0 0;
21 3 1.0 0 0 0 17.5 11.2 0 0;
22 3 1.0 0 0 0 0.0 0.0 0 0;
23 3 1.0 0 0 0 3.2 1.6 0 0;
24 3 1.0 0 0 4.3 8.7 6.7 0 0;
25 3 1.0 0 0 0 0.0 0.0 0 0;
26 3 1.0 0 0 0 3.5 2.3 0 0;
27 3 1.0 0 0 0 0.0 0.0 0 0;
28 3 1.0 0 0 0 0.0 0.0 0 0;
29 3 1.0 0 0 0 2.4 0.9 0 0;
30 3 1.0 0 0 0 10.6 1.9 0 0 ];
% From To R X B Tap
% Bus Bus (pu) (pu) (pu) Ratio
linedata=[ 1 2 0.0192 0.0575 0.0264 1
1 3 0.0452 0.1652 0.0204 1
2 4 0.0570 0.1737 0.0184 1
3 4 0.0132 0.0379 0.0042 1
2 5 0.0472 0.1983 0.0209 1
2 6 0.0581 0.1763 0.0187 1
4 6 0.0119 0.0414 0.0045 1
5 7 0.0460 0.1160 0.0102 1
6 7 0.0267 0.0820 0.0085 1
6 8 0.0120 0.0420 0.0045 1
6 9 0.0 0.2080 0.0 0.978
6 10 0.0 0.5560 0.0 0.969
9 11 0.0 0.2080 0.0 1
9 10 0.0 0.1100 0.0 1
4 12 0.0 0.2560 0.0 0.932
12 13 0.0 0.1400 0.0 1
12 14 0.1231 0.2559 0.0 1
12 15 0.0662 0.1304 0.0 1
12 16 0.0945 0.1987 0.0 1
14 15 0.2210 0.1997 0.0 1
16 17 0.0824 0.1923 0.0 1
15 18 0.1073 0.2185 0.0 1
18 19 0.0639 0.1292 0.0 1
19 20 0.0340 0.0680 0.0 1
10 20 0.0936 0.2090 0.0 1
10 17 0.0324 0.0845 0.0 1
10 21 0.0348 0.0749 0.0 1
10 22 0.0727 0.1499 0.0 1
21 23 0.0116 0.0236 0.0 1
15 23 0.1000 0.2020 0.0 1
22 24 0.1150 0.1790 0.0 1
23 24 0.1320 0.2700 0.0 1
24 25 0.1885 0.3292 0.0 1
25 26 0.2544 0.3800 0.0 1
25 27 0.1093 0.2087 0.0 1
28 27 0.0 0.3960 0.0 0.968
27 29 0.2198 0.4153 0.0 1
27 30 0.3202 0.6027 0.0 1
29 30 0.2399 0.4533 0.0 1
8 28 0.0636 0.2000 0.0214 1
6 28 0.0169 0.0599 0.065 1 ];

%% Data arranged for Linedata in the different vector
fb=linedata(:,1);tb=linedata(:,2);
r=linedata(:,3);x=linedata(:,4);
b=linedata(:,5);a=linedata(:,6);
z=r+1i*x;                        % Impedance of branch
y=1./z;b=1i*b;                 % admittance of branch
nl=length(fb);                   % No of branch
No_of_Bus=max(max(fb),max(tb));       % No of Bus

%% Formation of YBus matrix

Y=zeros(No_of_Bus,No_of_Bus);               % Initialize of YBus
for k=1:nl
Y(fb(k),tb(k))=Y(fb(k),tb(k))-y(k)/a(k);
Y(tb(k),fb(k))=Y(fb(k),tb(k));
end
for m=1:No_of_Bus
for n=1:nl
if fb(n)==m
Y(m,m)=Y(m,m)+y(n)/a(n)^2+b(n);
elseif tb(n)==m
Y(m,m)=Y(m,m)+y(n)+b(n);
end
end
end
G=real(Y);B=imag(Y);           % Separation of YBus
%% Data arranged for Linedata in the different vector
BMva=100;
busNo=busdata(:,1);type=busdata(:,2);V=busdata(:,3);del=busdata(:,4);
Pg=busdata(:,5)/BMva;Qg=busdata(:,6)/BMva;Pl=busdata(:,7)/BMva;
Ql=busdata(:,8)/BMva;Qmin=busdata(:,9)/BMva;Qmax=busdata(:,10)/BMva;
PV_Bus=find(type==2|type==1);PQ_Bus=find(type==3);     % type1(Slack),type2(PV_Bus Bus),type3(PQ_Bus Bus )
No_of_PQ_Bus=length(PQ_Bus);No_of_PV_Bus=length(PV_Bus);
Active_Power_specified=Pg-Pl;Reactive_Power_specified=Qg-Ql; % Net Power flow through different node
Iter=1;Tol=1; % Iterantion And tolerance
%% Newton Raphson Load Flow
while Tol>1e-5
P=zeros(No_of_Bus,1);
Q=zeros(No_of_Bus,1);
for i=1:No_of_Bus
for j=1:No_of_Bus
P(i)=P(i)+V(i)*V(j)*(G(i,j)*cos(del(i)-del(j))+B(i,j)*sin(del(i)-del(j)));
Q(i)=Q(i)+V(i)*V(j)*(G(i,j)*sin(del(i)-del(j))-B(i,j)*cos(del(i)-del(j)));
end
end
   % Verification of limit violation for reactive power
if Iter>2 && Iter<=7
for n=2:No_of_Bus
if type(n)==2;
QG=Q(n)+Ql(n);
if QG > Qmax(n)
V(n)=V(n)-0.01;
elseif QG < Qmin(n)
V(n)=V(n)+0.01;
end
end
end
end
dPa=Active_Power_specified-P;
dQa=Reactive_Power_specified-Q;
dP=dPa(2:No_of_Bus);
k=1;
dQ=zeros(No_of_PQ_Bus,1);
for i=1:No_of_Bus
if type(i)==3
dQ(k,1)=dQa(i);
k=k+1;
end
end
M=[dP;dQ];% delta Matrix
   %% Formation Fo Jacobian Matrix[J1 J2;J3 J4]
   %% Formation Of J1
J1=zeros(No_of_Bus-1,No_of_Bus-1);
for i=1:No_of_Bus-1
m=i+1;
for j=1:No_of_Bus-1;
n=j+1;
if m==n
for n=1:No_of_Bus
J1(i,j)=J1(i,j)+V(m)*V(n)*(-G(m,n)*sin(del(m)-del(n))+B(m,n)*cos(del(m)-del(n)));
end
J1(i,j)=J1(i,j)-V(m)^2*B(m,m);
else
J1(i,j)=V(m)*V(n)*(G(m,n)*sin(del(m)-del(n))-B(m,n)*cos(del(m)-del(n)));
end
end
end
   %% Formation Of J2
J2=zeros(No_of_Bus-1,No_of_PQ_Bus);
for i=1:No_of_Bus-1
m=i+1;
for j=1:No_of_PQ_Bus
n=PQ_Bus(j);
if m==n
for n=1:No_of_Bus
J2(i,j)=J2(i,j)+V(n)*(G(m,n)*cos(del(m)-del(n))+B(m,n)*sin(del(m)-del(n)));
end
J2(i,j)=J2(i,j)+V(m)*G(m,m);
else
J2(i,j)=V(m)*(G(m,n)*cos(del(m)-del(n))+B(m,n)*sin(del(m)-del(n)));
end
end
end
   %% Formation Of J3
J3=zeros(No_of_PQ_Bus,No_of_Bus-1);
for i=1:No_of_PQ_Bus
m=PQ_Bus(i);
for j=1:No_of_Bus-1
n=j+1;
if m==n
for n=1:No_of_Bus
J3(i,j)=J3(i,j)+V(m)*V(n)*(G(m,n)*cos(del(m)-del(n))+B(m,n)*sin(del(m)-del(n)));
end
J3(i,j)=J3(i,j)-V(m)^2*G(m,m);
else
J3(i,j)=V(m)*V(n)*(-G(m,n)*cos(del(m)-del(n))-B(m,n)*sin(del(m)-del(n)));
end
end
end
   %% Formation Of J4
J4=zeros(No_of_PQ_Bus,No_of_PQ_Bus);
for i=1:No_of_PQ_Bus
m=PQ_Bus(i);
for j=1:No_of_PQ_Bus
n=PQ_Bus(j);
if m==n
for n=1:No_of_Bus
J4(i,j)=J4(i,j)+V(n)*(G(m,n)*sin(del(m)-del(n))-B(m,n)*cos(del(m)-del(n)));
end
J4(i,j)=J4(i,j)-V(m)*B(m,m);
else
J4(i,j)=V(m)*(G(m,n)*sin(del(m)-del(n))-B(m,n)*cos(del(m)-del(n)));
end
end
end
J=[J1 J2;J3 J4]; % Jacobian Matrix
X=inv(J)*M;
dTh=X(1:No_of_Bus-1); % Change in angle
dV=X(No_of_Bus:end);   % change in volatge mag
del(2:No_of_Bus)=del(2:No_of_Bus)+dTh; % Voltage angle update
   % voltage mag update
k=1;
for n=2:No_of_Bus
if type(n)==3
V(n)=V(n)+dV(k);
k=k+1;
end
end
Iter=Iter+1;
Tol=max(abs(M));
end
Q=zeros(No_of_Bus,1);
for i=1:No_of_Bus
for j=1:No_of_Bus
P(i)=P(i)+V(i)*V(j)*(G(i,j)*cos(del(i)-del(j))+B(i,j)*sin(del(i)-del(j)));
Q(i)=Q(i)+V(i)*V(j)*(G(i,j)*sin(del(i)-del(j))-B(i,j)*cos(del(i)-del(j)));
end
end
for i=1:No_of_Bus
del(i)=180*del(i)/pi; % Converion radian to degree
end
%% Load Flow Solution
disp('----------------------------------------');
disp(' effective cost estimation by using Newton Raphson Loadflow Solution ');
disp('----------------------------------------');
disp(' |Bus | |Voltage| |Angle |');
disp(' | No.| |pu | |Degree|');
disp('----------------------------------------');
for m=1:No_of_Bus
fprintf(' %3g ' ,m);
fprintf(' %8.3f ' ,V(m));
fprintf(' %8.3f ' ,del(m));
fprintf(' %8.3f ',Pg(m)*BMva);
if type(m)==2
fprintf(' %8.3f ',(Q(m)+Ql(m))*BMva);

end
fprintf('\n');
end
disp('----------------------------------------');
fprintf( 'Number Of Ieration %3g \n',Iter)
toc


Related Solutions

Bus Data,Generator Data and Line Data for IEEE 30 Bus System in (p.u)
Bus Data,Generator Data and Line Data for IEEE 30 Bus System in (p.u)
matlab code to calculate cost of generator in power system
matlab code to calculate cost of generator in power system
IEEE 14 Bus data for the power-flow but this program also solve the other IEEE test-case...
IEEE 14 Bus data for the power-flow but this program also solve the other IEEE test-case data I need a matlab code for this case
Write a MATLAB code to calculate the electricity usage in a residential home. Note: Thing that...
Write a MATLAB code to calculate the electricity usage in a residential home. Note: Thing that impact the charge could be number of rooms, square feet, electric appliances. Plot the electricity charge in terms of the variability.
Matlab code for Gauss Siedel with solved example in Matlab
Matlab code for Gauss Siedel with solved example in Matlab
solve in MATLAB and screenshot code ?′′ −??′ +??= ???(????−?????)
solve in MATLAB and screenshot code ?′′ −??′ +??= ???(????−?????)
Face detection code in Matlab
Face detection code in Matlab
Matlab Code Write a procedure to calculate the log discriminant function for a given multi-variate Gaussian...
Matlab Code Write a procedure to calculate the log discriminant function for a given multi-variate Gaussian distribution and prior probability
This is a Matlab Exercise problem. Please create the Matlab code and figure for the following...
This is a Matlab Exercise problem. Please create the Matlab code and figure for the following problem using problem specifications: Plot x vs y when y=sin(x), y=cos(x), y=sin (2*x), and y=2*sin(x) when x = 1:0.1:10. Use 2 by 2 subplot, sin(x) is in location 1, cos(x) is in location 2, sin(2*x) is in location 3 and 2*sin(x) is in location 4. The plot should have: (1) x label = ‘x value’, y label = ‘y value’, legend ‘y=sin(x)’,’ y=cos(x)’,’ y=sin...
Fill in the blanks in the MATLAB code below.
Fill in the blanks in the MATLAB code below. (Do not type unnecessary words or blank spaces in your response. The correct answers are case-sensitive.) % Consider a row vector v. % Complete the lines of code below to find the average and standard deviation of the elements of vector v such that these two values are assigned to variables M and S, respectively. E = G =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT