Question

In: Electrical Engineering

Bus Data,Generator Data and Line Data for IEEE 30 Bus System in (p.u)

Bus Data,Generator Data and Line Data for IEEE 30 Bus System in (p.u)

Solutions

Expert Solution

data

%--------IEEE30-Bus system Data Used for PSO OPF---------------------------

% b itr rtr nrtr trl sz svc Pd

% -------------------------------------------------------------------------

30 110 4 0 37 2 9 2.834 0 0

% pq g tol

% -------------------------------------------------------------------------

21 6 .0001 0 0 0 0 0 0 0

%-------------------reg.trsf.data------------------------------------------

%From To R X G/2 B/2 TAP limits tmin tmax

% -------------------------------------------------------------------------

13 9 .0000 .2080 0 0 0.978 0.65 0.9 1.1

13 10 .0000 .5560 0 0 0.969 0.32 0.9 1.1

11 12 .0000 .2560 0 0 0.932 0.65 0.9 1.1

28 27 .0000 .3960 0 0 0.968 0.65 0.9 1.1

%-----------------n-reg. trsf.data-----------------------------------------

%From To R X B/2 TAP

% -------------------------------------------------------------------------

% 15 1 .00033 .00670 0 .00000 1.0

% 17 2 .00198 .03960 0 .00000 1.0

% 24 3 .00099 .01984 0 .00000 1.0

% 21 4 .00099 .01984 0 .00000 1.0

%-------------transmission line data---------------------------------------

%From To R X G/2 B/2 tap limits tmin tmax

% -------------------------------------------------------------------------

1 2 .0192 .0575 0 .0264 1.0 1.30 0.0 0.0  

1 8 .0452 .1652 0 .0204 1.0 1.30 0.0 0.0

2 11 .0570 .1737 0 .0184 1.0 0.65 0.0 0.0   

8 11 .0132 .0379 0 .0042 1.0 1.30 0.0 0.0  

2 5 .0472 .1983 0 .0209 1.0 1.30 0.0 0.0  

2 13 .0581 .1763 0 .0187 1.0 0.65 0.0 0.0  

11 13 .0119 .0414 0 .0045 1.0 0.90 0.0 0.0  

5 7 .0460 .1160 0 .0102 1.0 0.70 0.0 0.0  

13 7 .0267 .0820 0 .0085 1.0 1.30 0.0 0.0  

13 3 .0120 .0420 0 .0045 1.0 0.32 0.0 0.0  

9 4 .0000 .2080 0 .0000 1.0 0.65 0.0 0.0  

9 10 .0000 .1100 0 .0000 1.0 0.65 0.0 0.0  

  

12 6 .0000 .1400 0 .0000 1.0 0.65 0.0 0.0  

12 14 .1231 .2559 0 .0000 1.0 0.32 0.0 0.0  

12 15 .0662 .1304 0 .0000 1.0 0.32 0.0 0.0  

12 16 .0945 .1987 0 .0000 1.0 0.32 0.0 0.0  

14 15 .2210 .1997 0 .0000 1.0 0.16 0.0 0.0  

16 17 .0524 .1923 0 .0000 1.0 0.16 0.0 0.0  

15 18 .1073 .2185 0 .0000 1.0 0.16 0.0 0.0  

18 19 .0639 .1292 0 .0000 1.0 0.16 0.0 0.0  

19 20 .0340 .0680 0 .0000 1.0 0.32 0.0 0.0  

10 20 .0936 .2090 0 .0000 1.0 0.32 0.0 0.0  

10 17 .0324 .0845 0 .0000 1.0 0.32 0.0 0.0  

10 21 .0348 .0749 0 .0000 1.0 0.32 0.0 0.0  

10 22 .0727 .1499 0 .0000 1.0 0.32 0.0 0.0  

21 22 .0116 .0236 0 0.0000 1.0 0.32 0.0 0.0  

15 23 .1000 .2020 0 .0000 1.0 0.16 0.0 0.0  

22 24 .1150 .1790 0 .0000 1.0 0.16 0.0 0.0  

23 24 .1320 .2700 0 .0000 1.0 0.16 0.0 0.0  

24 25 .1885 .3292 0 .0000 1.0 0.16 0.0 0.0  

25 26 .2544 .3800 0 .0000 1.0 0.16 0.0 0.0  

25 27 .1093 .2087 0 .0000 1.0 0.16 0.0 0.0  

27 29 .2198 .4153 0 .0000 1.0 0.16 0.0 0.0  

27 30 .3202 .6027 0 .0000 1.0 0.16 0.0 0.0  

29 30 .2399 .4533 0 .0000 1.0 0.16 0.0 0.0  

3 28 .0636 .2000 0 .0214 1.0 0.32 0.0 0.0  

13 28 .0169 .0599 0 .0065 1.0 0.32 0.0 0.0  

%--------shunt impedance data----------------------------------------------

% Bus R X

% -------------------------------------------------------------------------

10 0 .0000 -5.2631 0 0 0 0 0.9 1.1

24 0 .0000 -23.255 0 0 0 0 0.9 1.1

%-----------P - Q Load Data------------------------------------------------

% Bus MW MVAR

% -------------------------------------------------------------------------

2 .217 .127 0.00 00.0 0.0 5.0 0.9 1.1 0.0

3 .300 .300 0.00 00.0 0.0 5.0 0.9 1.1 0.0

5 .942 .190 0.00 00.0 0.0 5.0 0.9 1.1 0.0

7 .228 .109 0.00 00.0 0.0 5.0 0.9 1.1 0.0

8 .024 .012 0.00 00.0 0.0 5.0 0.9 1.1 0.0

10 .058 .020 0.00 00.001 0.0 5.0 0.9 1.1 0.0

11 .076 .016 0.00 00.0 0.0 5.0 0.9 1.1 0.0

12 .112 .075 0.00 00.001 0.0 5.0 0.9 1.1 0.0

14 .062 .016 0.00 00.0 0.0 5.0 0.9 1.1 0.0

15 .082 .025 0.00 00.001 0.0 5.0 0.9 1.1 0.0

16 .035 .018 0.00 00.0 0.0 5.0 0.9 1.1 0.0

17 .090 .058 0.00 00.001 0.0 5.0 0.9 1.1 0.0

18 .032 .009 0.00 00.0 0.0 5.0 0.9 1.1 0.0

19 .095 .034 0.00 00.0 0.0 5.0 0.9 1.1 0.0

20 .022 .007 0.00 00.001 0.0 5.0 0.9 1.1 0.0

21 .175 .112 0.00 00.001 0.0 5.0 0.9 1.1 0.0

23 .032 .016 0.00 00.001 0.0 5.0 0.9 1.1 0.0

24 .087 .067 0.00 00.001 0.0 5.0 0.9 1.1 0.0

26 .035 .023 0.00 00.0 0.0 5.0 0.9 1.1 0.0

29 .024 .009 0.00 00.001 0.0 5.0 0.9 1.1 0.0

30 .106 .019 0.00 00.0 0.0 5.0 0.9 1.1 0.0

  

%-----------------Generation Data------------------------------------------

% Bus MW Qgmx Qgmn Vsp Vmax Vmin

% -------------------------------------------------------------------------

1 0.000 1.5 -0.2 1.05 1.06 0.95 0 0 0   

2 0.800 0.6 -0.2 1.045 1.1 0.95 0 0 0

3 0.200 0.4873 -0.15 1.01 1.1 0.95 0 0 0

4 0.200 0.4 -0.1 1.05 1.1 0.95 0 0 0

5 0.500 0.6245 -0.15 1.01 1.1 0.95 0 0 0

6 0.200 0.4472 -0.15 1.05 1.1 0.95 0 0 0

%------ Generaotor Cost Coefficients---------------------------------------

%c b a Pmin Pmax Qmin Qmax

%--------------------------------------------------------------------------

37.5 200 0 0.5 2.0 -0.2 1.5 0 0 0   

175 175 0 0.2 0.8 -0.2 0.6 0 0 0

83.4 325 0 0.1 0.35 -0.15 0.4873 0 0 0

250 300 0 0.1 0.3 -0.1 0.45 0 0 0   

625 100 0 0.15 0.5 -0.15 0.6254 0 0 0   

250 300 0 0.12 0.40 -0.15 0.4472 0 0 0   

same the above data in matlab file and save as data.m

program:

clc;

clear all;

tic

load data.m;

bus=data(1,:);

nb=bus(1);

nl=bus(3)+bus(5);

tibus=data(2,:);

Npv=tibus(2);

npq=tibus(1);

Npq=nb-Npv;

linedata=data(3:nl+2,1:end);

sn=bus(6);

if sn~=0,

bu=data(nl+3:nl+2+sn,1:end);

else

bu=zeros(1,end);

end

pqdata1=zeros(nb,1);

pqdata=data(nl+3+sn:(nl+npq++sn+2),(1:end));

pvdata=data((nl+npq+sn+3):(nl+npq+sn+Npv+2),(1:end));

for i=1:10,

pqdata1(pqdata(:,1),i)=pqdata(:,i);

end

for j=1:nb,

if pqdata1(j,1)==0,

pqdata1(j,1)=j;

end

end

pqdata1(:,5)=1;

pqdata1(:,6)=max(pvdata(:,6));

pqdata1(:,7)=min(pvdata(:,7));

pqdata1(:,8)=pqdata1(:,3);

pqdata(:,3)=0;

for i=1:npq,

if i<=Npv,

loaddata=pvdata;

end

end

for i=1:Npv,

if pqdata1(i,1)==pvdata(i,1),

loaddata(i,10)=pqdata1(i,2);

end

end

loaddata=[loaddata; pqdata1(Npv+1:nb,1:end)];

disp('---------------------------------------------% given data%-------------------------------------------------------------------------------');

disp('----------------------------------------------%bus data%---------------------------------------------------------------------------------');

disp(' b itr rtr nrtr trl sz SVC Pd');

disp(bus);

disp('-----------------------------------------------%transmission bus data%--------------------------------------------------------------------');

disp(' pq g tol');

disp(tibus);

disp('------------------------------------------------%line data%--------------------------------------------------------------------------------');

disp(' From To R X G/2 B/2 TAP limits tmin tmax');

disp(linedata);

disp('-----------------------------------------------%shunt admitance data%-----------------------------------------------------------------------');

disp('Bus R X')

disp(bu);

disp('------------------------------------------------%loadf data%--------------------------------------------------------------------------------');

disp(' Bus MW Qgmx Qgmn Vsp Vmax Vmin');

disp(loaddata);

itr=0;

a=linedata(:,7); %---------Ybus caluculation------------%

r=linedata(:,3);

x=linedata(:,4);

z=r+1i*x;

b=zeros(nb,1);

if bu(:,1)~=0,

b(bu(:,1))=1./bu(:,4);

end

c=1i.*b;

disp('b');

disp(b)

y=1./z;

disp('y');

disp(y)

fb=linedata(:,1);

tb=linedata(:,2);

v=ones(nb,1);

d=zeros(nb,1);

Y=zeros(nb,nb);

for i=1:nl

Y(fb(i),tb(i))=Y(fb(i),tb(i))-(y(i)/conj(a(i)));

Y(tb(i),fb(i))=Y(fb(i),tb(i));

end

for i=1:nb

for j=1:nl

if fb(j)==i

Y(i,i)=Y(i,i)+y(j)/((a(j))^2)+complex(0,linedata(j,6));

else if tb(j)==i

Y(i,i)=Y(i,i)+y(j)+complex(0,linedata(j,6));

end

end

end

Y(i,i)=Y(i,i)-c(i);

end

disp('Y');

disp(Y)

G=real(Y);

B=imag(Y);

g=2*Npq+Npv;

bus=ones(nb,1);

for i=Npv+1:nb,

bus(i,1)=2;

end

for i=1:nb

v(i,1)=loaddata(i,5);

d(i,1)=0;

end

disp('v');

disp(v)

vmx=loaddata(:,6);

vmn=loaddata(:,7);

if max(loaddata(:,2))>50,

base=100;

else

base=1;

end

qlmx=loaddata(:,3)/base;

qlmn=loaddata(:,4)/base;

tol=10;

while (tol>0.0001)

vprev=v;

P=zeros(nb,1);

Q=zeros(nb,1);

for i=1:nb

for k=1:nb

P(i,1)=P(i,1)+(v(i,1))*(G(i,k)*cos(d(i,1)-d(k,1))+B(i,k)*sin(d(i,1)-d(k,1)))*v(k,1);

Q(i,1)=Q(i,1)+(v(i,1))*(G(i,k)*sin(d(i,1)-d(k,1))-B(i,k)*cos(d(i,1)-d(k,1)))*v(k,1);

end

if bus(i)==1,

if (Q(i)>qlmx(i) || Q(i)

if(Q(i)

Q(i)=qlmn(i);

else

Q(i)=qlmx(i);

end

bus(i)=2;

else

bus(i)=1;

end

end

end

disp('bus')

disp(bus)

disp('P')

disp(P)

disp('Q')

disp(Q)

Pspec=zeros(nb-1,1);

Qspec=zeros(Npq,1);

for i=2:nb

Pspec(i-1,1)=(loaddata(i,2)-loaddata(i,10))/base;

end

for i=Npv+1:nb,

Qspec(i-(Npv),1)=loaddata(i,8)/base;

end

delP=zeros(nb-1,1); %--------mismatch calculation----------------%

delQ=zeros(Npq,1);

for i=2:Npv

delP(i-1,1)=Pspec(i-1,1)-P(i,1);

end

for i=Npv+1:nb

delP(i-1,1)=(-1)*Pspec(i-1,1)-P(i,1);

delQ(i-(Npv),1)=(-1)*Qspec(i-(Npv),1)-Q(i,1);

end

disp('delP');

disp(delP)

disp('delQ');

disp(delQ)

del=zeros(g-1,1);

for i=1:g-1

if (i

del(i,1)=delP(i,1);

end

if (i>=nb)

del(i,1)=delQ(i-(nb-1),1);

end

end

disp('del');

disp(del)

J11=zeros(nb-1,nb-1); %-----------jacobian matrix calculation------------%

J12=zeros(nb-1,Npq);

J21=zeros(Npq,nb-1);

J22=zeros(Npq,Npq);

for i=2:nb

for k=2:nb

if(k==i)

for l=1:nb

if(l~=i)

J11(i-1,k-1)=J11(i-1,k-1)+v(i,1)*v(l,1)*(-G(i,l)*sin(d(i,1)-d(l,1))+B(i,l)*cos(d(i,1)-d(l,1)));

end

end

else

J11(i-1,k-1)=(v(i,1)*v(k,1)*(G(i,k)*sin(d(i,1)-d(k,1))-B(i,k)*cos(d(i,1)-d(k,1))));

end

end

end

for i=2:nb

for k=Npv+1:nb

if(i==k)

for l=1:nb

if(l~=i)

J12(i-1,k-(Npv))=J12(i-1,k-(Npv))+v(l,1)*(G(i,l)*cos(d(i,1)-d(l,1))+B(i,l)*sin(d(i,1)-d(l,1)));

end

end

J12(i-1,k-(Npv))=J12(i-1,k-(Npv))+2*v(i,1)*G(i,i);

else

J12(i-1,k-(Npv))=v(i,1)*(G(i,k)*cos(d(i,1)-d(k,1))+B(i,k)*sin(d(i,1)-d(k,1)));

end

end

end

for i=Npv+1:nb

for k=2:nb

if(i==k)

for l=1:nb

if(l~=i)

J21(i-(Npv),k-1)=J21(i-(Npv),k-1)+v(i,1)*v(l,1)*(G(i,l)*cos(d(i,1)-d(l,1))+B(i,l)*sin(d(i,1)-d(l,1)));

end

end

else

J21(i-(Npv),k-1)=(v(i,1)*v(k,1)*(-G(i,k)*cos(d(i,1)-d(k,1))-B(i,k)*sin(d(i,1)-d(k,1))));

end

end

end

for i=Npv+1:nb

for k=Npv+1:nb

if(k==i)

for l=1:nb

if(l~=i)

J22(i-(Npv),k-(Npv))=J22(i-(Npv),k-(Npv))+(v(l,1)*(G(i,l)*sin(d(i,1)-d(l,1))-B(i,l)*cos(d(i,1)-d(l,1))));

end

end

J22(i-(Npv),k-(Npv))=J22(i-(Npv),k-(Npv))-2*v(i,1)*B(i,i);

else

J22(i-(Npv),k-(Npv))=v(i,1)*(G(i,k)*sin(d(i,1)-d(k,1))-B(i,k)*cos(d(i,1)-d(k,1)));

end

end

end

disp('J11');

disp(J11)

disp('J12');

disp(J12)

disp('J21');

disp(J21)

disp('J22');

disp(J22)

J=[J11 J12;J21 J22];

disp('J');

disp(J)

Ji = inv(J);

Vcn=(inv(J))*del; %---------change in load angles and voltages----------%

disp('Vcn');

disp(Vcn)

deld=zeros(nb-1,1);

delv=zeros(Npq,1);

for i=1:nb-1

deld(i,1)=Vcn(i,1);

end

disp('deld');

disp(deld)

for i=nb:g-1

delv(i-(nb-1),1)=Vcn(i,1);

end

disp('delv');

disp(delv)

dnew=zeros(nb-1,1);

vnew=zeros(Npq,1);

for i=2:nb %-----------updating the voltages and load angles-----------%

d(i,1)=d(i,1)+deld(i-1,1);

end

disp('d');

disp(d)

for i=Npv+1:nb

v(i,1)=v(i,1)+delv(i-Npv,1);

end

disp('v');

disp(v)

tol=max(abs(abs(v(:,1))-abs(vprev(:,1))));

if tol<=0.0001,

disp('the system is converging in the no.of iterations= ');

disp(itr);

end

itr=itr+1;

disp('tol');

disp(tol)

end

p1=0;q1=0;

for k=1:nb

P(1,1)=p1+(v(1,1))*(G(1,k)*cos(d(1,1)-d(k,1))+B(1,k)*sin(d(1,1)-d(k,1)))*v(k,1);

Q(1,1)=q1+(v(1,1))*(G(1,k)*sin(d(1,1)-d(k,1))-B(1,k)*cos(d(1,1)-d(k,1)))*v(k,1);

p1=P(1);

q1=Q(1);

end

disp('P');

disp(P)

disp('Q');

disp(Q)

d=d*(180/pi);

disp('VM');

disp(v);

disp('delta_bus load angle');

disp(d);

vrect=zeros(nb,1);

for i=1:nb,

vrect(i)=v(i)*(cosd(d(i))+1i*sind(d(i)));

end

pls=zeros(11,4);

plss=zeros(11,4);

I0=zeros(nl,1);

Ic=zeros(nl,1);

sflow=zeros(nl,1);

I=zeros(nl,1);

ploss=zeros(nl,1);

for i=1:nl,

for j=1:nb,

for k=1:nb,

if fb(i)==j && tb(i)==k,

I0(i)=1i*b(j)*vrect(j);

Ic(i)=v(j)*complex(0,linedata(i,6));

I(i)=(conj(vrect(j))-conj(vrect(k)))*(-(conj(Y(j,k))));

ploss(i,1)=(abs(I(i))^2)*real(1./(-(conj(Y(j,k)))));

pls(i,1)=i;

pls(i,2)=j;

pls(i,3)=k;

pls(i,4)=ploss(i,1);

end

end

end

end

disp('----------------%power loss%-------------------');

disp('tr.line no. bus(from) bus(to) powerloss');

disp(pls)

pl=0;

for i=1:nl,

pl=pl+pls(i,4);

end

disp('total powerloss in per unit......,');

disp(pl);

if base==100,

disp('power loss in MWs................,');

pl=pl*base;

disp(pl);

end

toc

above is the program for the ieee 30 bus systsem.


Related Solutions

IEEE Std 1110-2002 - IEEE Guide for Synchronous Generator Modeling Practices and Applications in Power System...
IEEE Std 1110-2002 - IEEE Guide for Synchronous Generator Modeling Practices and Applications in Power System Stability Analyses a) Basic Information about the Standard: Name, number and issue date of the standard b) One to three sentences discussing what the specification covers (For example, “This standard covers the testing method of a synchronous machine to obtain the machine parameters…”). c) Answer the following question in your own words: Why is the standard important? (Obviously, if it wasn’t important, no standard...
IEEE 14 Bus data for the power-flow but this program also solve the other IEEE test-case...
IEEE 14 Bus data for the power-flow but this program also solve the other IEEE test-case data I need a matlab code for this case
matlab code to calculate cost (min cost) of generators for 30 bus IEEE.
matlab code to calculate cost (min cost) of generators for 30 bus IEEE.
6. A 30 MVA generator with 15% reactance is connected to a bus bar. A 25...
6. A 30 MVA generator with 15% reactance is connected to a bus bar. A 25 MVA transformer with 10% reactance is also connected through a 10% bus bar reactor to the same bus bar. Both of these reactance is based on 25 MVA. If a feeder taken out from the bus bars through a circuit breaker develops a three-phase fault, what should be the appropriate rating of the circuit breaker? 7. A system operates at 220 kVA and 11...
Consider the classical power system where one generator is connected to the infinite bus through two...
Consider the classical power system where one generator is connected to the infinite bus through two transmission lines. We want to study the transient stability for a fault on one of the two lines. The generator parameters are as follows: Pm = 1, H = 4, KD = 5, x'd = 0.25, E' =1.4. The transmission line where the fault occurs has a line reactance of 0.6 pu. The other transmission line that remains in service has a line reactance...
Consider a salient-role generator delivering power through a short transmission line to an infinite bus V∞=1∠0°,...
Consider a salient-role generator delivering power through a short transmission line to an infinite bus V∞=1∠0°, |Ea|=1.5. The active power delivered to the infinite bus is 0.7. We are given the generator reactances Xd=1.6 and Xq=1.0 and the line reactance XL=0.3. Neglect resistances, draw the phasor diagram and find Ea and Ia.
QUIESTION 1 A three-phase synchronous generator is connected to an infinite bus. The infinite bus voltage...
QUIESTION 1 A three-phase synchronous generator is connected to an infinite bus. The infinite bus voltage and the generated voltage are o 1.0 pu ∠0 and o 1.0pu ∠42.84 , respectively. The synchronous reactance is 0.85 pu and resistances are neglected. a) Compute power angle (δ), armature current (Is), power factor (pf), real power (P), and reactive power (Q). Draw the phasor diagram. b) If the prime mover torque is kept constant at a value corresponding to P=0.8 pu, compute...
Design a parity bit generator and checker. A system transmits 4 bits of data. Design generator...
Design a parity bit generator and checker. A system transmits 4 bits of data. Design generator and checker in same schematic use XOR gate. DO NOT USE KMAPS. Include truth tables. I am trying to understand the problem. Include boolean expression and explain you work please. Please explain I need to Learn
  Given the following line impedances of a three-bus system, obtain its admittance matrix.                           &
  Given the following line impedances of a three-bus system, obtain its admittance matrix.                                     Line (bus to bus)                                                     1-2               0.05         0.15                                     1-3               0.10         0.30                                    2-3               0.15         0.45              
A 1000MVA, 20kV, 60 Hz three phase generator is connected to an infinite bus through a...
A 1000MVA, 20kV, 60 Hz three phase generator is connected to an infinite bus through a 1000MVA, 20kV? / 345kVY transformer to a 345kV circuit breaker and a 345kV transmission line. The generator reactances are X``d=0.17, X`d=0.30, and Xd=1.5 per unit on a 1000MVA, 20kV base. Generator time constants are T``d=0.05 seconds, T`d=1.0 seconds, and TA=0.10 seconds. The transformer series reactance is 0.10 per unit on the transformer ratings as a base. Neglect transformer losses, excitation current, and transformer time...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT