In: Accounting
Consider a 30-year mortgage for $137018 at an annual interest rate of 3.9%. What is the remaining balance after 19 years? Round your answer to the nearest dollar.
Step-1:Calculation of annual Payment | |||||||||||
Annual Payment | = | Loan Amount / Present Value of annuity of 1 | |||||||||
= | $ 1,37,018 | / | 17.503939 | ||||||||
= | $ 7,828 | ||||||||||
Working: | |||||||||||
Present Value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | ||||||||
= | (1-(1+0.039)^-30)/0.039 | i | 3.90% | ||||||||
= | 17.503939 | n | 30 | ||||||||
Step-2:Calculation of remaining balance after 19 years | |||||||||||
Remaining Balance after 19 Years | = | Annual Payment*Present Value of annuity of 1 | |||||||||
= | $ 7,828 | * | 8.80792 | ||||||||
= | $ 68,947 | ||||||||||
Working: | |||||||||||
Present Value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | ||||||||
= | (1-(1+0.039)^-11)/0.039 | i | 3.90% | ||||||||
= | 8.80792 | n | 11 | (30-19) | |||||||
Thus, | |||||||||||
Remaining balance after 19 years is | $ 68,947 | ||||||||||