Question

In: Statistics and Probability

Suppose an operation is described by the following c.d.f., F(X) = { 0 for x <...

Suppose an operation is described by the following c.d.f., F(X) = { 0 for x < 12.5 and 1-exp[(-20)(x-12.5)] for 12.5 < x}

a. Sketch the function

b. What is the pdf?

c. Sketch the pdf

d. What proportion is between 12.5 and 12.6?

PLEASE SHOW ALL STEPS, AND EXPLANATIONS. THANK YOU.

Solutions

Expert Solution

(a)

(d)


Related Solutions

Suppose f is a twice differentiable function such that f′(x)>0 and f′′(x)<0 everywhere, and consider the...
Suppose f is a twice differentiable function such that f′(x)>0 and f′′(x)<0 everywhere, and consider the following data table. x      0       1       2 f(x)   3       A       B For each part below, determine whether the given values of A and B are possible (i.e., consistent with the information about f′and f′′ given above) or impossible, and explain your answer. a)A= 5, B= 6 (b)A= 5, B= 8 (c)A= 6, B= 6 (d)A= 6, B= 6.1 (e)A= 6, B= 9
f(x)=0 if x≤0, f(x)=x^a if x>0 For what a is f continuous at x = 0...
f(x)=0 if x≤0, f(x)=x^a if x>0 For what a is f continuous at x = 0 For what a is f differentiable at x = 0 For what a is f twice differentiable at x = 0
Find f. f ''(x) = x−2,    x > 0,    f(1) = 0,    f(4) = 0 f(x)=
Find f. f ''(x) = x−2,    x > 0,    f(1) = 0,    f(4) = 0 f(x)=
Find f(x) for the following function. Then find f(6), f(0), and f(-7). f(x)=-2x^2+1x f(x)= f(6)= f(0)=...
Find f(x) for the following function. Then find f(6), f(0), and f(-7). f(x)=-2x^2+1x f(x)= f(6)= f(0)= f(-7)=
Suppose that the distribution of wind velocity, X, is described by the probability density function f(x)...
Suppose that the distribution of wind velocity, X, is described by the probability density function f(x) = (x/σ^2)e^-(x^2/ 2(σ^2)) , x ≥ 0. Suppose that for the distribution of wind velocity in Newcastle, measured in km/hr, σ^2 = 100. (a) In task 1, you showed that the quantile function for this distribution is given by: Q(p) = σ (−2 ln(1 − p))^(1/2), 0 ≤ p < 1 Use this quantile function to generate 100,000 random values from this distribution (when...
Consider the function f(x)f(x) whose second derivative is f''(x)=5x+10sin(x)f′′(x)=5x+10sin(x). If f(0)=4f(0)=4 and f'(0)=4f′(0)=4, what is f(5)f(5)?....
Consider the function f(x)f(x) whose second derivative is f''(x)=5x+10sin(x)f′′(x)=5x+10sin(x). If f(0)=4f(0)=4 and f'(0)=4f′(0)=4, what is f(5)f(5)?. show work
Which of the following functions are one-to-one? Group of answer choices f;[−3,3]→[0,3],f(x)=9−x2f;[−3,3]→[0,3],f(x)=9−x2 f;R→R,f(x)=x3f;R→R,f(x)=x3 f;[0,∞]→[0,∞],f(x)=x2f;[0,∞]→[0,∞],f(x)=x2
Which of the following functions are one-to-one? Group of answer choices f;[−3,3]→[0,3],f(x)=9−x2f;[−3,3]→[0,3],f(x)=9−x2 f;R→R,f(x)=x3f;R→R,f(x)=x3 f;[0,∞]→[0,∞],f(x)=x2f;[0,∞]→[0,∞],f(x)=x2
The y-intercept is (0, 0). The x-intercepts are (0, 0), (2, 0). Degree is 3. End behavior: as x → −∞, f(x) → −∞, as x → ∞, f(x) → ∞.
The y-intercept is (0, 0). The x-intercepts are (0, 0), (2, 0). Degree is 3. End behavior: as x → −∞, f(x) → −∞, as x → ∞, f(x) → ∞.  
Question 3 Suppose that X and Y have the following joint probability distribution: f(x,y) x 0...
Question 3 Suppose that X and Y have the following joint probability distribution: f(x,y) x 0 1 2 y 0 0.12 0.08 0.06 1 0.04 0.19 0.12 2 0.04 0.05 0.3 Find the followings: E(Y)= Var(X)= Cov(X,Y)= Correlation(X,Y)=
2. Let f(x) ≥ 0 on [1, 2] and suppose that f is integrable on [1,...
2. Let f(x) ≥ 0 on [1, 2] and suppose that f is integrable on [1, 2] with R 2 1 f(x)dx = 2 3 . Prove that f(x 2 ) is integrable on [1, √ 2] and √ 2 6 ≤ Z √ 2 1 f(x 2 )dx ≤ 1 3 .
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT