In: Math
Use the step by step procedures: Social scientists have long been interested in the relationship between economic development and health. To gain some insight into this relationship, we can utilize data on the life expectancy of females from birth and GDP per capita. you’ll find data from 91 countries. Use the data in the sheet entitled “Part 2 Question 9” to calculate and interpret the correlation coefficient.
GNP | LExpF |
600 | 75.5 |
2250 | 74.7 |
2980 | 77.7 |
2780 | 73.8 |
1690 | 75.7 |
1640 | 72.4 |
2242 | 74.0 |
1880 | 75.9 |
1320 | 74.8 |
2370 | 72.7 |
630 | 55.4 |
2680 | 67.6 |
1940 | 75.1 |
1260 | 69.2 |
980 | 67.6 |
330 | 66.1 |
1110 | 68.5 |
1160 | 66.5 |
2560 | 74.9 |
2560 | 72.8 |
2490 | 66.0 |
15540 | 76.8 |
26040 | 78.7 |
22080 | 77.7 |
19490 | 80.5 |
22320 | 78.4 |
5990 | 74.0 |
9550 | 76.7 |
16830 | 78.6 |
17320 | 79.9 |
23120 | 75.7 |
7600 | 72.4 |
11020 | 78.6 |
23660 | 80.0 |
34064 | 80.0 |
16100 | 77.9 |
17000 | 79.6 |
25430 | 81.8 |
20470 | 79.8 |
21790 | 78.3 |
168 | 42.0 |
6340 | 69.4 |
2490 | 55.0 |
3020 | 64.8 |
10920 | 77.4 |
1240 | 67.8 |
16150 | 75.4 |
5220 | 65.8 |
7050 | 65.2 |
1630 | 65.8 |
19860 | 72.9 |
210 | 56.0 |
380 | 70.9 |
14210 | 80.1 |
350 | 52.1 |
570 | 62.0 |
2320 | 71.6 |
110 | 62.5 |
170 | 48.1 |
380 | 59.2 |
730 | 66.1 |
11160 | 74.0 |
470 | 71.7 |
1420 | 68.9 |
2060 | 63.3 |
610 | 46.1 |
2040 | 59.7 |
1010 | 55.3 |
600 | 60.3 |
120 | 45.6 |
390 | 53.2 |
260 | 44.6 |
390 | 55.8 |
370 | 60.5 |
5310 | 62.6 |
200 | 41.2 |
960 | 62.5 |
80 | 48.1 |
1030 | 57.5 |
360 | 52.2 |
240 | 42.6 |
120 | 46.6 |
2530 | 63.5 |
480 | 51.0 |
810 | 49.5 |
1440 | 66.4 |
220 | 52.7 |
110 | 54.7 |
220 | 53.7 |
420 | 52.5 |
640 | 60.1 |
(1) Using a similar dataset in “Part 2 Question 10”, calculate and interpret the correlation coefficient for the data on a life expectancy of males from birth and GDP per capita.
GNP | LExpM |
600 | 69.6 |
2250 | 68.3 |
2980 | 71.8 |
2780 | 65.4 |
1690 | 67.2 |
1640 | 66.5 |
2242 | 64.6 |
1880 | 66.4 |
1320 | 66.4 |
2370 | 65.5 |
630 | 51.0 |
2680 | 62.3 |
1940 | 68.1 |
1260 | 63.4 |
980 | 63.4 |
330 | 60.4 |
1110 | 64.4 |
1160 | 56.8 |
2560 | 68.4 |
2560 | 66.7 |
2490 | 62.1 |
15540 | 70.0 |
26040 | 70.7 |
22080 | 71.8 |
19490 | 72.3 |
22320 | 71.8 |
5990 | 65.4 |
9550 | 71.0 |
16830 | 72.0 |
17320 | 73.3 |
23120 | 67.2 |
7600 | 66.5 |
11020 | 72.5 |
23660 | 74.2 |
34064 | 73.9 |
16100 | 72.2 |
17000 | 73.3 |
25430 | 75.9 |
20470 | 73.0 |
21790 | 71.5 |
168 | 41.0 |
6340 | 66.8 |
2490 | 55.8 |
3020 | 63.0 |
10920 | 73.9 |
1240 | 64.2 |
16150 | 71.2 |
5220 | 62.2 |
7050 | 61.7 |
1630 | 62.5 |
19860 | 68.6 |
210 | 56.9 |
380 | 68.0 |
14210 | 74.3 |
350 | 52.5 |
570 | 58.5 |
2320 | 67.5 |
110 | 60.0 |
170 | 50.9 |
380 | 59.0 |
730 | 62.5 |
11160 | 68.7 |
470 | 67.8 |
1420 | 63.8 |
2060 | 61.6 |
610 | 42.9 |
2040 | 52.3 |
1010 | 50.1 |
600 | 57.8 |
120 | 42.4 |
390 | 49.9 |
260 | 41.4 |
390 | 52.2 |
370 | 56.5 |
5310 | 59.1 |
200 | 38.1 |
960 | 59.1 |
80 | 44.9 |
1030 | 55.0 |
360 | 48.8 |
240 | 39.4 |
120 | 43.4 |
2530 | 57.5 |
480 | 48.6 |
810 | 42.9 |
1440 | 64.9 |
220 | 49.9 |
110 | 51.3 |
220 | 50.3 |
420 | 50.4 |
640 | 56.5 |
We use the formula :
For the first data set, we have :
GNP (X) | LExpF (Y) | X*Y | X2 | Y2 | |
600 | 75.5 | 45300 | 360000 | 5700.25 | |
2250 | 74.7 | 168075 | 5062500 | 5580.09 | |
2980 | 77.7 | 231546 | 8880400 | 6037.29 | |
2780 | 73.8 | 205164 | 7728400 | 5446.44 | |
1690 | 75.7 | 127933 | 2856100 | 5730.49 | |
1640 | 72.4 | 118736 | 2689600 | 5241.76 | |
2242 | 74 | 165908 | 5026564 | 5476 | |
1880 | 75.9 | 142692 | 3534400 | 5760.81 | |
1320 | 74.8 | 98736 | 1742400 | 5595.04 | |
2370 | 72.7 | 172299 | 5616900 | 5285.29 | |
630 | 55.4 | 34902 | 396900 | 3069.16 | |
2680 | 67.6 | 181168 | 7182400 | 4569.76 | |
1940 | 75.1 | 145694 | 3763600 | 5640.01 | |
1260 | 69.2 | 87192 | 1587600 | 4788.64 | |
980 | 67.6 | 66248 | 960400 | 4569.76 | |
330 | 66.1 | 21813 | 108900 | 4369.21 | |
1110 | 68.5 | 76035 | 1232100 | 4692.25 | |
1160 | 66.5 | 77140 | 1345600 | 4422.25 | |
2560 | 74.9 | 191744 | 6553600 | 5610.01 | |
2560 | 72.8 | 186368 | 6553600 | 5299.84 | |
2490 | 66 | 164340 | 6200100 | 4356 | |
15540 | 76.8 | 1193472 | 241491600 | 5898.24 | |
26040 | 78.7 | 2049348 | 678081600 | 6193.69 | |
22080 | 77.7 | 1715616 | 487526400 | 6037.29 | |
19490 | 80.5 | 1568945 | 379860100 | 6480.25 | |
22320 | 78.4 | 1749888 | 498182400 | 6146.56 | |
5990 | 74 | 443260 | 35880100 | 5476 | |
9550 | 76.7 | 732485 | 91202500 | 5882.89 | |
16830 | 78.6 | 1322838 | 283248900 | 6177.96 | |
17320 | 79.9 | 1383868 | 299982400 | 6384.01 | |
23120 | 75.7 | 1750184 | 534534400 | 5730.49 | |
7600 | 72.4 | 550240 | 57760000 | 5241.76 | |
11020 | 78.6 | 866172 | 121440400 | 6177.96 | |
23660 | 80 | 1892800 | 559795600 | 6400 | |
34064 | 80 | 2725120 | 1160356096 | 6400 | |
16100 | 77.9 | 1254190 | 259210000 | 6068.41 | |
17000 | 79.6 | 1353200 | 289000000 | 6336.16 | |
25430 | 81.8 | 2080174 | 646684900 | 6691.24 | |
20470 | 79.8 | 1633506 | 419020900 | 6368.04 | |
21790 | 78.3 | 1706157 | 474804100 | 6130.89 | |
168 | 42 | 7056 | 28224 | 1764 | |
6340 | 69.4 | 439996 | 40195600 | 4816.36 | |
2490 | 55 | 136950 | 6200100 | 3025 | |
3020 | 64.8 | 195696 | 9120400 | 4199.04 | |
10920 | 77.4 | 845208 | 119246400 | 5990.76 | |
1240 | 67.8 | 84072 | 1537600 | 4596.84 | |
16150 | 75.4 | 1217710 | 260822500 | 5685.16 | |
5220 | 65.8 | 343476 | 27248400 | 4329.64 | |
7050 | 65.2 | 459660 | 49702500 | 4251.04 | |
1630 | 65.8 | 107254 | 2656900 | 4329.64 | |
19860 | 72.9 | 1447794 | 394419600 | 5314.41 | |
210 | 56 | 11760 | 44100 | 3136 | |
380 | 70.9 | 26942 | 144400 | 5026.81 | |
14210 | 80.1 | 1138221 | 201924100 | 6416.01 | |
350 | 52.1 | 18235 | 122500 | 2714.41 | |
570 | 62 | 35340 | 324900 | 3844 | |
2320 | 71.6 | 166112 | 5382400 | 5126.56 | |
110 | 62.5 | 6875 | 12100 | 3906.25 | |
170 | 48.1 | 8177 | 28900 | 2313.61 | |
380 | 59.2 | 22496 | 144400 | 3504.64 | |
730 | 66.1 | 48253 | 532900 | 4369.21 | |
11160 | 74 | 825840 | 124545600 | 5476 | |
470 | 71.7 | 33699 | 220900 | 5140.89 | |
1420 | 68.9 | 97838 | 2016400 | 4747.21 | |
2060 | 63.3 | 130398 | 4243600 | 4006.89 | |
610 | 46.1 | 28121 | 372100 | 2125.21 | |
2040 | 59.7 | 121788 | 4161600 | 3564.09 | |
1010 | 55.3 | 55853 | 1020100 | 3058.09 | |
600 | 60.3 | 36180 | 360000 | 3636.09 | |
120 | 45.6 | 5472 | 14400 | 2079.36 | |
390 | 53.2 | 20748 | 152100 | 2830.24 | |
260 | 44.6 | 11596 | 67600 | 1989.16 | |
390 | 55.8 | 21762 | 152100 | 3113.64 | |
370 | 60.5 | 22385 | 136900 | 3660.25 | |
5310 | 62.6 | 332406 | 28196100 | 3918.76 | |
200 | 41.2 | 8240 | 40000 | 1697.44 | |
960 | 62.5 | 60000 | 921600 | 3906.25 | |
80 | 48.1 | 3848 | 6400 | 2313.61 | |
1030 | 57.5 | 59225 | 1060900 | 3306.25 | |
360 | 52.2 | 18792 | 129600 | 2724.84 | |
240 | 42.6 | 10224 | 57600 | 1814.76 | |
120 | 46.6 | 5592 | 14400 | 2171.56 | |
2530 | 63.5 | 160655 | 6400900 | 4032.25 | |
480 | 51 | 24480 | 230400 | 2601 | |
810 | 49.5 | 40095 | 656100 | 2450.25 | |
1440 | 66.4 | 95616 | 2073600 | 4408.96 | |
220 | 52.7 | 11594 | 48400 | 2777.29 | |
110 | 54.7 | 6017 | 12100 | 2992.09 | |
220 | 53.7 | 11814 | 48400 | 2883.69 | |
420 | 52.5 | 22050 | 176400 | 2756.25 | |
640 | 60.1 | 38464 | 409600 | 3612.01 | |
Total | 522454 | 6008.8 | 39768571 | 8895229284 | 407916 |
We obtain the following :
Using the above formula, we get Correlation coefficient r = 0.65
Correlation coefficient value of 0.65 indicates moderate positive linear relationship between life expectancy of females from birth and GDP per capita.
For the second data set, we have :
GNP (X) | LExpM (Y) | X*Y | X2 | Y2 | |
600 | 69.6 | 41760 | 360000 | 4844.16 | |
2250 | 68.3 | 153675 | 5062500 | 4664.89 | |
2980 | 71.8 | 213964 | 8880400 | 5155.24 | |
2780 | 65.4 | 181812 | 7728400 | 4277.16 | |
1690 | 67.2 | 113568 | 2856100 | 4515.84 | |
1640 | 66.5 | 109060 | 2689600 | 4422.25 | |
2242 | 64.6 | 144833.2 | 5026564 | 4173.16 | |
1880 | 66.4 | 124832 | 3534400 | 4408.96 | |
1320 | 66.4 | 87648 | 1742400 | 4408.96 | |
2370 | 65.5 | 155235 | 5616900 | 4290.25 | |
630 | 51 | 32130 | 396900 | 2601 | |
2680 | 62.3 | 166964 | 7182400 | 3881.29 | |
1940 | 68.1 | 132114 | 3763600 | 4637.61 | |
1260 | 63.4 | 79884 | 1587600 | 4019.56 | |
980 | 63.4 | 62132 | 960400 | 4019.56 | |
330 | 60.4 | 19932 | 108900 | 3648.16 | |
1110 | 64.4 | 71484 | 1232100 | 4147.36 | |
1160 | 56.8 | 65888 | 1345600 | 3226.24 | |
2560 | 68.4 | 175104 | 6553600 | 4678.56 | |
2560 | 66.7 | 170752 | 6553600 | 4448.89 | |
2490 | 62.1 | 154629 | 6200100 | 3856.41 | |
15540 | 70 | 1087800 | 241491600 | 4900 | |
26040 | 70.7 | 1841028 | 678081600 | 4998.49 | |
22080 | 71.8 | 1585344 | 487526400 | 5155.24 | |
19490 | 72.3 | 1409127 | 379860100 | 5227.29 | |
22320 | 71.8 | 1602576 | 498182400 | 5155.24 | |
5990 | 65.4 | 391746 | 35880100 | 4277.16 | |
9550 | 71 | 678050 | 91202500 | 5041 | |
16830 | 72 | 1211760 | 283248900 | 5184 | |
17320 | 73.3 | 1269556 | 299982400 | 5372.89 | |
23120 | 67.2 | 1553664 | 534534400 | 4515.84 | |
7600 | 66.5 | 505400 | 57760000 | 4422.25 | |
11020 | 72.5 | 798950 | 121440400 | 5256.25 | |
23660 | 74.2 | 1755572 | 559795600 | 5505.64 | |
34064 | 73.9 | 2517330 | 1160356096 | 5461.21 | |
16100 | 72.2 | 1162420 | 259210000 | 5212.84 | |
17000 | 73.3 | 1246100 | 289000000 | 5372.89 | |
25430 | 75.9 | 1930137 | 646684900 | 5760.81 | |
20470 | 73 | 1494310 | 419020900 | 5329 | |
21790 | 71.5 | 1557985 | 474804100 | 5112.25 | |
168 | 41 | 6888 | 28224 | 1681 | |
6340 | 66.8 | 423512 | 40195600 | 4462.24 | |
2490 | 55.8 | 138942 | 6200100 | 3113.64 | |
3020 | 63 | 190260 | 9120400 | 3969 | |
10920 | 73.9 | 806988 | 119246400 | 5461.21 | |
1240 | 64.2 | 79608 | 1537600 | 4121.64 | |
16150 | 71.2 | 1149880 | 260822500 | 5069.44 | |
5220 | 62.2 | 324684 | 27248400 | 3868.84 | |
7050 | 61.7 | 434985 | 49702500 | 3806.89 | |
1630 | 62.5 | 101875 | 2656900 | 3906.25 | |
19860 | 68.6 | 1362396 | 394419600 | 4705.96 | |
210 | 56.9 | 11949 | 44100 | 3237.61 | |
380 | 68 | 25840 | 144400 | 4624 | |
14210 | 74.3 | 1055803 | 201924100 | 5520.49 | |
350 | 52.5 | 18375 | 122500 | 2756.25 | |
570 | 58.5 | 33345 | 324900 | 3422.25 | |
2320 | 67.5 | 156600 | 5382400 | 4556.25 | |
110 | 60 | 6600 | 12100 | 3600 | |
170 | 50.9 | 8653 | 28900 | 2590.81 | |
380 | 59 | 22420 | 144400 | 3481 | |
730 | 62.5 | 45625 | 532900 | 3906.25 | |
11160 | 68.7 | 766692 | 124545600 | 4719.69 | |
470 | 67.8 | 31866 | 220900 | 4596.84 | |
1420 | 63.8 | 90596 | 2016400 | 4070.44 | |
2060 | 61.6 | 126896 | 4243600 | 3794.56 | |
610 | 42.9 | 26169 | 372100 | 1840.41 | |
2040 | 52.3 | 106692 | 4161600 | 2735.29 | |
1010 | 50.1 | 50601 | 1020100 | 2510.01 | |
600 | 57.8 | 34680 | 360000 | 3340.84 | |
120 | 42.4 | 5088 | 14400 | 1797.76 | |
390 | 49.9 | 19461 | 152100 | 2490.01 | |
260 | 41.4 | 10764 | 67600 | 1713.96 | |
390 | 52.2 | 20358 | 152100 | 2724.84 | |
370 | 56.5 | 20905 | 136900 | 3192.25 | |
5310 | 59.1 | 313821 | 28196100 | 3492.81 | |
200 | 38.1 | 7620 | 40000 | 1451.61 | |
960 | 59.1 | 56736 | 921600 | 3492.81 | |
80 | 44.9 | 3592 | 6400 | 2016.01 | |
1030 | 55 | 56650 | 1060900 | 3025 | |
360 | 48.8 | 17568 | 129600 | 2381.44 | |
240 | 39.4 | 9456 | 57600 | 1552.36 | |
120 | 43.4 | 5208 | 14400 | 1883.56 | |
2530 | 57.5 | 145475 | 6400900 | 3306.25 | |
480 | 48.6 | 23328 | 230400 | 2361.96 | |
810 | 42.9 | 34749 | 656100 | 1840.41 | |
1440 | 64.9 | 93456 | 2073600 | 4212.01 | |
220 | 49.9 | 10978 | 48400 | 2490.01 | |
110 | 51.3 | 5643 | 12100 | 2631.69 | |
220 | 50.3 | 11066 | 48400 | 2530.09 | |
420 | 50.4 | 21168 | 176400 | 2540.16 | |
640 | 56.5 | 36160 | 409600 | 3192.25 | |
Total | 522454 | 5585.7 | 36624925 | 8895229284 | 351374.2 |
We obtain the following :
Using the above formula, we get Correlation coefficient r = 0.643
Correlation coefficient value of 0.643 indicates moderate positive linear relationship between life expectancy of males from birth and GDP per capita.