Question

In: Statistics and Probability

Let P be the uniform probability on the integers from 1 to 99. Let B be...

Let P be the uniform probability on the integers from 1 to 99. Let B be the subset of numbers which have the digit 3. Let A be the subset of even numbers. What is P(A), P(B)? What is P(A|B)? P(B|A)?

Solutions

Expert Solution

We have integers from 1 to 99.

Event A : subset of even numbers

Event B : subset of numbers which have the digit 3

Event A : {2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98}

Event B : {3,13,23,30,31,32,33,34,35,36,37,38,39,43,53,63,73,83,93}

Total number in event A = n(A) = 49

Total number in event B = n(B) = 19

so total outcomes are = 99

favourable outcomes for event A is = 49

favourable outcomes for event B is = 19

Now P(A|B) and P(B|A) is a conditional probability and is equal to :

means the intersection value between the two events, that is the common values,

So = {30,32,34,36,38}

there are 5 common values in between them

=>

First finding P(A|B) :

Now finding P(B|A) :

I have rounded the answer to 4 decimal places.


Related Solutions

Generate 7 integers with equal probability from a function which returns 1/10 with probability P and...
Generate 7 integers with equal probability from a function which returns 1/10 with probability P and (1-P) What are the ROC curve and meaning of sensitivity, specificity, confusion matrix What is the definition of a P-value? How to explain p-value to customers
Let a,b be an element in the integers with a greater or equal to 1. Then...
Let a,b be an element in the integers with a greater or equal to 1. Then there exist unique q, r in the integers such that b=aq+r where z less than or equal r less than or equal a+(z-1). Prove the Theorem.
Let X1 and X2 be uniform on the consecutive integers -n, -(n+1), ... , n-1, n....
Let X1 and X2 be uniform on the consecutive integers -n, -(n+1), ... , n-1, n. Use convolution to find the mass function for X1 + X2.
Probability Let A, B and C be Boolean variables denoting three independent events with P(A=1) =...
Probability Let A, B and C be Boolean variables denoting three independent events with P(A=1) = 0.7, P(B=1) = 0.3, and P(C=1) = 0.1. Let D be the event that at least one of A and B occurs, i.e., D = A OR B. Let E be the event that at least one of B and C occurs, i.e., E = B OR C. Let F be the event that exactly one of A and B occurs, i.e., F =...
1. Let X be the uniform distribution on [-1, 1] and let Y be the uniform...
1. Let X be the uniform distribution on [-1, 1] and let Y be the uniform distribution on [-2,2]. a) what are the p.d.f.s of X and Y resp.? b) compute the means of X, Y. Can you use symmetry? c) compute the variance. Which variance is higher?
The probability that A wins B is p. And the probability that B wins A is...
The probability that A wins B is p. And the probability that B wins A is q. If you win 2 more times than opponent, the game is over. What is the the probability that A two more wins and the game end?
Show that if a and b are integers with a ≡ b (mod p) for every...
Show that if a and b are integers with a ≡ b (mod p) for every prime p, then it must be that a = b
Let n be a random number between 1 and 100000 chosen with uniform probability. Compute a)...
Let n be a random number between 1 and 100000 chosen with uniform probability. Compute a) The probability that n can be divided by 3 b) The probability that n can be divided by 6 c) The probability that n can be divided by 9 d) The probability that n can be divided by 9 given that in can be divided by 6 e) The probability that n can be divided by 6 given that in can be divided by...
Let U be a continuous uniform variable over the interval [0, 1]. What is the probability...
Let U be a continuous uniform variable over the interval [0, 1]. What is the probability that U falls within kσ of its mean for k = 1, 2, 3?
Let A, B and C be mutually independent events of a probability space (Ω, F, P),...
Let A, B and C be mutually independent events of a probability space (Ω, F, P), such that P(A) = P(B) = P(C) = 1 4 . Compute P((Ac ∩ Bc ) ∪ C). b) [4 points] Suppose that in a bicycle race, there are 19 professional cyclists, that are divided in a random manner into two groups. One group contains 10 people and the other group has 9 people. What is the probability that two particular people, let’s say...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT