Let X1,X2, . . . , Xn be a random sample from the uniform
distribution with pdf f(x; θ1, θ2) =
1/(2θ2), θ1 − θ2 < x <
θ1 + θ2, where −∞ < θ1 < ∞
and θ2 > 0, and the pdf is equal to zero
elsewhere.
(a) Show that Y1 = min(Xi) and Yn = max(Xi), the joint
sufficient statistics for θ1 and θ2, are
complete.
(b) Find the MVUEs of θ1 and θ2.