Question

In: Other

a bungee jumper whit mass 65

a bungee jumper whit mass 65. kg jumps from a high bridge. after reaching his lowest point. he oscillates up a down, hitting a low point eight more times in 38.0 s. he finally comes to rest 25.0 m below the level of the bridge. calculate the spring stiffness constant and the unstretched length of the bungee cord.

Solutions

Expert Solution

A bungee jumper mass m is = 65.0 kg
the time period is T = 38.0s / 8
                                              = 4.75s
                                 T = 2π√ (m /k )
                                 4.75s = 2π √ 65.0 / k
         spring constant k = 113.6 N/m
            let the unstreched length is L
     then the extension in the cord is x = mg / K
                                                            = 65.0 kg * 9.8 / 113.6
                                                            = 5.6 m
   unstreched length of the bungee jump cord is L = 25 - 5.6 m
                                                                            = 19.3 m

Related Solutions

A bungee jumper (mass 80 kg) is attached to a 10 m bungee cord attached to...
A bungee jumper (mass 80 kg) is attached to a 10 m bungee cord attached to the top of a crane. For the first 5 meters of extension, the force exerted by the bungee cord increases by 2 N for every 1 cm. For any further extension, the force increases by only 1.2 N for every 1 cm.. a) Sketch the elastic force vs the length of the bungee cord. b) What is the maximum extension of the bungee cord...
A bungee jumper of mass 110 kg jumps from a cliff of height 120m. The massless...
A bungee jumper of mass 110 kg jumps from a cliff of height 120m. The massless relaxed bungee cord has a length of 15 m. Ignore the height of the body of the jumper. K=125N/m. (a) Find the velocity of the jumper right before the bungee starts to stretch. (b) Find the distance the cord stretches. Please explain the steps. Thank you!
In class we learned about Kate, a bungee jumper with mass ? = 50.0 kg who...
In class we learned about Kate, a bungee jumper with mass ? = 50.0 kg who jumps off a bridge of height ℎ = 25.0 m above a river. After she jumps, the bungee cord – which behaves as an ideal spring with spring constant ? = 28.5 N/m – stretches to a new equilibrium with length ?? = 20.0 m (since this is the new equilibrium, let us refer to it as ? = 0 in Hooke’s law and...
A bungee jumper with mass 64.5 kg jumps from a high bridge. After arriving at his...
A bungee jumper with mass 64.5 kg jumps from a high bridge. After arriving at his lowest point, he oscillates up and down, reaching a low point seven more times in 44.0 s . He finally comes to rest 20.5 m below the level of the bridge. Part A Estimate the spring stiffness constant of the bungee cord assuming SHM. Part B Estimate the unstretched length of the bungee cord assuming SHM.
A bungee jumper with mass 58.5 kg jumps from a high bridge. After arriving at his...
A bungee jumper with mass 58.5 kg jumps from a high bridge. After arriving at his lowest point, he oscillates up and down, reaching a low point seven more times in 41.0 s . He finally comes to rest 20.0 m below the level of the bridge. Part A Estimate the spring stiffness constant of the bungee cord assuming SHM. Part B Estimate the unstretched length of the bungee cord assuming SHM.
Design a "bungee jump" apparatus for adults . A bungee jumper falls from a high platform...
Design a "bungee jump" apparatus for adults . A bungee jumper falls from a high platform with two elastic cords tied to the ankles. The jumper falls freely for a while, with the cords slack. Then the jumper falls an additional distance with the cords increasingly tense. Assume that you have cords that are 11 m long, and that the cords stretch in the jump an additional 23 m for a jumper whose mass is 140 kg, the heaviest adult...
Design a "bungee jump" apparatus for adults. A bungee jumper falls from a high platform with...
Design a "bungee jump" apparatus for adults. A bungee jumper falls from a high platform with two elastic cords tied to the ankles. The jumper falls freely for a while, with the cords slack. Then the jumper falls an additional distance with the cords increasingly tense. Assume that you have cords that are 12 m long, and that the cords stretch in the jump an additional 19 m for a jumper whose mass is 120 kg, the heaviest adult you...
Design a "bungee jump" apparatus for adults. A bungee jumper falls from a high platform with...
Design a "bungee jump" apparatus for adults. A bungee jumper falls from a high platform with two elastic cords tied to the ankles. The jumper falls freely for a while, with the cords slack. Then the jumper falls an additional distance with the cords increasingly tense. Assume that you have cords that are 11 m long, and that the cords stretch in the jump an additional 23 m for a jumper whose mass is 140 kg, the heaviest adult you...
Design a "bungee jump" apparatus for adults. A bungee jumper falls from a high platform with...
Design a "bungee jump" apparatus for adults. A bungee jumper falls from a high platform with two elastic cords tied to the ankles. The jumper falls freely for a while, with the cords slack. Then the jumper falls an additional distance with the cords increasingly tense. Assume that you have cords that are 14 m long, and that the cords stretch in the jump an additional 20 m for a jumper whose mass is 80 kg, the heaviest adult you...
A bungee jumper plans to bungee jump from a bridge 74.0 m above the ground. He...
A bungee jumper plans to bungee jump from a bridge 74.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT