Question

In: Physics

Design a "bungee jump" apparatus for adults . A bungee jumper falls from a high platform...

Design a "bungee jump" apparatus for adults

. A bungee jumper falls from a high platform with two elastic cords tied to the ankles. The jumper falls freely for a while, with the cords slack. Then the jumper falls an additional distance with the cords increasingly tense. Assume that you have cords that are 11 m long, and that the cords stretch in the jump an additional 23 m for a jumper whose mass is 140 kg, the heaviest adult you will allow to use your bungee jump (heavier customers would hit the ground).

a). Make a series of simple diagrams, like a comic strip,showing the platform, the jumper, and the two cords at varioustimes in the fall and the rebound. On each diagram, draw and labelvectors representing the forces acting on the jumper, and thejumper's velocity. Make the relative lengths of the vectors reflecttheir relative magnitudes

(b). At what instant is there the greatest tension in thecords? How do you know?

(c). What is the jumper's speed at this instant?

(d). Is the jumper's momentum changing at this instant or not?(That is, is dp/dt non-zero, or zero?) Explain briefly.

(e). Focus on this instant, and use the principles of thischapter to determine the spring's stiffness k(sub-s) for each cord.Explain your analysis. Give numerical values for yourdesign.

(f). What is the maximum tension that each cord must supportwithout breaking?

Give numerical values for your design.

(g). What is the maximum acceleration ("g's") that the jumperexperiences?

What is the direction of this maximum acceleration?

(h). State clearly what approximations and estimations youhave made in your design.

Solutions

Expert Solution


Related Solutions

Design a "bungee jump" apparatus for adults. A bungee jumper falls from a high platform with...
Design a "bungee jump" apparatus for adults. A bungee jumper falls from a high platform with two elastic cords tied to the ankles. The jumper falls freely for a while, with the cords slack. Then the jumper falls an additional distance with the cords increasingly tense. Assume that you have cords that are 12 m long, and that the cords stretch in the jump an additional 19 m for a jumper whose mass is 120 kg, the heaviest adult you...
Design a "bungee jump" apparatus for adults. A bungee jumper falls from a high platform with...
Design a "bungee jump" apparatus for adults. A bungee jumper falls from a high platform with two elastic cords tied to the ankles. The jumper falls freely for a while, with the cords slack. Then the jumper falls an additional distance with the cords increasingly tense. Assume that you have cords that are 11 m long, and that the cords stretch in the jump an additional 23 m for a jumper whose mass is 140 kg, the heaviest adult you...
Design a "bungee jump" apparatus for adults. A bungee jumper falls from a high platform with...
Design a "bungee jump" apparatus for adults. A bungee jumper falls from a high platform with two elastic cords tied to the ankles. The jumper falls freely for a while, with the cords slack. Then the jumper falls an additional distance with the cords increasingly tense. Assume that you have cords that are 14 m long, and that the cords stretch in the jump an additional 20 m for a jumper whose mass is 80 kg, the heaviest adult you...
A bungee jumper plans to bungee jump from a bridge 74.0 m above the ground. He...
A bungee jumper plans to bungee jump from a bridge 74.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body...
A 58.0 kg bungee jumper is standing on a tall platform (ho = 46.0 m) as...
A 58.0 kg bungee jumper is standing on a tall platform (ho = 46.0 m) as shown in the diagram. The bungee cord has an unstrained length of Lo = 9.00 m, and when stretched, behaves like an ideal spring with a spring constant of k = 61.0 N/m. The jumper falls from rest, and the only forces acting on him are gravity and, for the latter part of the descent, the elastic force of the bungee cord. What is...
A bungee jumper with mass 64.5 kg jumps from a high bridge. After arriving at his...
A bungee jumper with mass 64.5 kg jumps from a high bridge. After arriving at his lowest point, he oscillates up and down, reaching a low point seven more times in 44.0 s . He finally comes to rest 20.5 m below the level of the bridge. Part A Estimate the spring stiffness constant of the bungee cord assuming SHM. Part B Estimate the unstretched length of the bungee cord assuming SHM.
A bungee jumper with mass 58.5 kg jumps from a high bridge. After arriving at his...
A bungee jumper with mass 58.5 kg jumps from a high bridge. After arriving at his lowest point, he oscillates up and down, reaching a low point seven more times in 41.0 s . He finally comes to rest 20.0 m below the level of the bridge. Part A Estimate the spring stiffness constant of the bungee cord assuming SHM. Part B Estimate the unstretched length of the bungee cord assuming SHM.
When bungee jumping from a high bridge over Victoria Falls, an operator first attaches an elastic...
When bungee jumping from a high bridge over Victoria Falls, an operator first attaches an elastic rope to the jumper. The jumper then jumps off the bridge, falling freely until they reach the unstretched length of the rope. Then, the rope begins to stretch and slows the jumper to a stop. The rope pulls the jumper back up, and they oscillate up and down for a while until the operator pulls the jumper back up to the bridge. A. The...
A 61 kg bungee jumper jumps from a bridge. At the point when she is travelling...
A 61 kg bungee jumper jumps from a bridge. At the point when she is travelling 20 m/s, the cord starts to stretch. The cord stretches 25 m before causing her to stop completely for a moment. How fast is she travelling when the cord is stretched 12 m?
A 61 kg bungee jumper jumps from a bridge. At the point when she is travelling...
A 61 kg bungee jumper jumps from a bridge. At the point when she is travelling 22 m/s, the cord starts to stretch. The cord stretches 28 m before causing her to stop completely for a moment. How fast is she travelling when the cord is stretched 12 m? Please show all of your work.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT