In: Statistics and Probability
Tire pressure monitoring systems (TPMS) warn the driver when the tire pressure of the vehicle is 28% below the target pressure. Suppose the target tire pressure of a certain car is 28 psi (pounds per square inch.)
(a) At what psi will the TPMS trigger a warning for this car? (Round your answer to 2 decimal place.)
When the tire pressure is (above or below?) (what?) psi
(b) Suppose tire pressure is a normally distributed random variable with a standard deviation equal to 3 psi. If the car’s average tire pressure is on target, what is the probability that the TPMS will trigger a warning? (Round your answer to 4 decimal places.)
Probability
(c) The manufacturer’s recommended correct inflation range is 26 psi to 30 psi. Assume the tires’ average psi is on target. If a tire on the car is inspected at random, what is the probability that the tire’s inflation is within the recommended range? (Round your intermediate calculations and final answer to 4 decimal places.)
Probability
a)
.the target tire pressure of a certain car is 28 psi
28% below the target pressure = 0.28*28=7.84psi
TPMS trigger a warning for this car below (28-7.84)=20.16 psi
b)
µ =    28      
       
σ =    3      
       
left tailed          
       
X ≤    20.16      
       
          
       
Z =   (X - µ ) / σ =   -2.61  
       
          
       
P(X ≤   20.16   ) = P(Z ≤  
-2.61   ) =   0.004483
probability is 0.0045
c)
µ =    28      
           
           
σ =    3      
           
           
we need to calculate probability for ,  
           
           
       
26   ≤ X ≤    30      
           
       
X1 =    26   ,   X2 =  
30          
       
          
           
           
Z1 =   (X1 - µ ) / σ =   -0.667  
           
           
Z2 =   (X2 - µ ) / σ =   0.667  
           
           
          
           
           
P (   26   < X <   
30   ) =    P (   
-0.666666667   < Z <    0.667  
)
          
           
           
= P ( Z <    0.667   ) - P ( Z
<   -0.667   ) =   
0.7475   -    0.2525   =   
0.4950
probability is 0.4950