In: Statistics and Probability
The table below lists measured amounts of redshift and the distances (billions of light-years) to randomly selected astronomical objects. Find the (a) explained variation, (b) unexplained variation, and (c) indicated prediction interval. There is sufficient evidence to support a claim of a linear correlation, so it is reasonable to use the regression equation when making predictions. For the prediction interval, use a 90% confidence level with a redshift of 0.0126.
Redshift Distance
0.0235 0.33
0.0537 0.74
0.0716 0.98
0.0399 0.54
0.0443 0.63
0.0108 0.15
X | Y | XY | X² | Y² |
0.0235 | 0.33 | 0.007755 | 0.00055225 | 0.1089 |
0.0537 | 0.74 | 0.039738 | 0.00288369 | 0.5476 |
0.0716 | 0.98 | 0.070168 | 0.00512656 | 0.9604 |
0.0399 | 0.54 | 0.021546 | 0.00159201 | 0.2916 |
0.0443 | 0.63 | 0.027909 | 0.00196249 | 0.3969 |
0.0108 | 0.15 | 0.00162 | 0.00011664 | 0.0225 |
Ʃx = | 0.2438 |
Ʃy = | 3.37 |
Ʃxy = | 0.168736 |
Ʃx² = | 0.01223364 |
Ʃy² = | 2.3279 |
Sample size, n = | 6 |
x̅ = Ʃx/n = 0.2438/6 = | 0.040633333 |
y̅ = Ʃy/n = 3.37/6 = | 0.561666667 |
SSxx = Ʃx² - (Ʃx)²/n = 0.01223 - (0.2438)²/6 = | 0.002327233 |
SSyy = Ʃy² - (Ʃy)²/n = 2.3279 - (3.37)²/6 = | 0.435083333 |
SSxy = Ʃxy - (Ʃx)(Ʃy)/n = 0.16874 - (0.2438)(3.37)/6 = | 0.031801667 |
a) Explained variation, SSR = SSxy²/SSxx = (0.0318)²/0.00233 = 0.43457
b) Unexplained variation, SSE = SSyy -SSxy²/SSxx = 0.43508 - (0.0318)²/0.00233 = 0.000513
c)
Standard error, se = √(SSE/(n-2)) = √(0.00051/(6-2)) = 0.0113
Slope, b = SSxy/SSxx = 0.0318/0.00233 = 13.66501
y-intercept, a = y̅ -b* x̅ = 0.56167 - (13.66501)*0.04063 = 0.0064118
Regression equation :
ŷ = 0.0064 + (13.665) x
Predicted value of y at x = 0.0126
ŷ = 0.0064 + (13.665) * 0.0126 = 0.1786
Significance level, α = 0.1
Critical value, t_c = T.INV.2T(0.1, 4) = 2.1318
90% Prediction interval :
Lower limit = ŷ - tc*se*√(1 + (1/n) + ((x-x̅)²/(SSxx)))
= 0.1786 - 2.1318*0.0113*√(1 + (1/6) + ((0.0126 - 0.0406)²/(0.0023))) = 0.1490
Upper limit = ŷ + tc*se*√(1 + (1/n) + ((x-x̅)²/(SSxx)))
= 0.1786 + 2.1318*0.0113*√(1 + (1/6) + ((0.0126 - 0.0406)²/(0.0023))) = 0.2082