In: Chemistry
Discuss under what set of conditions a real gas is most likely to deviate from ideal behavior and why
The behavior of real gases usually agrees with the predictions of the ideal gas equation to within 5% at normal temperatures and pressures. At low temperatures or high pressures, real gases deviate significantly from ideal gas behavior.
The kinetic theory assumes that gas particles occupy a negligible fraction of the total volume of the gas. It also assumes that the force of attraction between gas molecules is zero.
The first assumption works at pressures close to 1 atm. But something happens to the validity of this assumption as the gas is compressed. Imagine for the moment that the atoms or molecules in a gas were all clustered in one corner of a cylinder. At normal pressures, the volume occupied by these particles is a negligibly small fraction of the total volume of the gas. But at high pressures, this is no longer true. As a result, real gases are not as compressible at high pressures as an ideal gas. The volume of a real gas is therefore larger than expected from the ideal gas equation at high pressures.
The assumption that there is no force of attraction between gas particles cannot be true. If it was, gases would never condense to form liquids. In reality, there is a small force of attraction between gas molecules that tends to hold the molecules together. This force of attraction has two consequences: (1) gases condense to form liquids at low temperatures and (2) the pressure of a real gas is sometimes smaller than expected for an ideal gas.