Question

In: Chemistry

The simple Michaelis-Menten model applies only to the initial velocity of an enzyme-catalyzed reaction, that is,...

The simple Michaelis-Menten model applies only to the initial velocity of an enzyme-catalyzed reaction, that is, to the velocity when no appreciable amount of product has accumulated. What feature of the model is consistent with this constraint? Explain.

Solutions

Expert Solution

Michaelis-Menten model relies on a number of assumptions. During the Veneration and Memorisation of the Derivation, these assumptions may be dashed past by the lecturer doing the mathematical masturbation, and may be ignored by the students trying to grasp the point of the modelling. This is problematic, as not understanding the assumptions leads to the Michaelis-Menten being applied thoughtlessly in situations in which it does not apply.

Which turns out to be almost all situations.

The assumptions are:

The only relevant chemical species in the system are the enzyme (E), the substrate (S), the enzyme-substrate complex (ES‡), and the product (P).
The only relevant chemical reactions occurring in the system are the reversible association of enzyme and substrate to form the enzyme-substrate complex; and the irreversible breakdown of the enzyme-substrate complex to product.
The concentration of the enzyme-substrate complex is constant.

For the Michaelis-Menten model to be applicable to an enzyme in a cell, then these assumptions need to hold.


Related Solutions

1. Starting from the enzyme-catalyzed reaction: S -> P Derive the (a) Michaelis-Menten Equation (b) starting...
1. Starting from the enzyme-catalyzed reaction: S -> P Derive the (a) Michaelis-Menten Equation (b) starting from the Michaelis-Menten equation, derive the Lineweaver-Burker plot. Provide brief explanation in each step. 2. Predict the optimum pH and temperature for human saliat amylase. Why did you arrive on the prediction?
Initial rate data for an enzyme that obeys Michaelis-Menten kinetics are shown in the following table....
Initial rate data for an enzyme that obeys Michaelis-Menten kinetics are shown in the following table. When the enzyme concentration is 3 nmol ml−1, a Lineweaver-Burk plot of this data gives a line with a y-intercept of 0.00426 (μmol−1ml s). [S] μM v0 (μmol ml−1 s−1) 320 169 160 132 80.0 92.0 40.0 57.2 20.0 32.6 10.0 17.5 a. Calculate Kcat for the reaction b. Calculate Km for the enzyme cWhen the reactions in part (B) are repeated in the...
Consider the enzyme-catalyzed reaction A → B. You determine experimentally that the maximal initial velocity, Vmax,...
Consider the enzyme-catalyzed reaction A → B. You determine experimentally that the maximal initial velocity, Vmax, for the amount of enzyme you have added is 100 units. You also determine that the Michaelis constant, Km, for this enzyme is 80 μM. What concentration of A will give an initial velocity of 60 units? (Note that the units for velocity can be ignored here; they will be relevant in another question. HINT: you need do NO calculations.) The answer is 120,...
What are the key differences between the Michaelis-Menten model that describes enzyme kinetics and the Monod...
What are the key differences between the Michaelis-Menten model that describes enzyme kinetics and the Monod model that describes whole-cell or community kinetics?
A substrate is decomposed in the presence of an enzyme according to the Michaelis-Menten equation with...
A substrate is decomposed in the presence of an enzyme according to the Michaelis-Menten equation with the following kinetic parameters: Km = 20 g/L Vmax = 12.0 g/L-min (a) Determine the concentration of substrate after leaving the second reactor in a two-reactor series of 20-liter CSTRs. The flow rate is 2.00 L/min. The inlet substrate concentration is 40 g/L. The enzyme concentration in the two reactors is maintained at the same value all of the time. (b) Determine the conversion...
In Michaelis-Menten kinetics, what values would make an enzyme “good” at catalysis?
In Michaelis-Menten kinetics, what values would make an enzyme “good” at catalysis?
IN MICHAELIS MENTEN GRAPH, HOW WOULD YOU INCREASE VELOCITY BEYOND Vmax?
IN MICHAELIS MENTEN GRAPH, HOW WOULD YOU INCREASE VELOCITY BEYOND Vmax?
2) The initial rate for an enzyme-catalyzed reaction has been determined at a number of substrate...
2) The initial rate for an enzyme-catalyzed reaction has been determined at a number of substrate concentrations. Data are given below. [S](mu*M) 5 10 20 50 100 200 500 vo (mu*Mmin-1) 21 62 92 126 185 210 217 a) Estimate Vmax and Km from a direct graph of vo vs [S] (Michaelis-Menton plot). b) Use a Lineweaver-Burk plot to analyze the same data. What are the values of Vmax and Km? c) If the total enzyme concentration is 100 pM,...
For enzymes that follow Michaelis–Menten kinetics, the inhibitors that inhibit enzyme activity include reversible inhibitor and...
For enzymes that follow Michaelis–Menten kinetics, the inhibitors that inhibit enzyme activity include reversible inhibitor and irreversible inhibitor. 1. Describe the type of reversible inhibitor. 2. Suggest ways to distinguish between types of inhibitors through enzyme reaction experiments.
1.The following data were obtained in a study of an enzyme known to follow Michaelis-Menten kinetics:...
1.The following data were obtained in a study of an enzyme known to follow Michaelis-Menten kinetics: 2/27/ 20 V0 (mol/min) 217 325 433 488 647 Substrate added (mmol/L) 0.8 2 4 6 1,000        The Km for A) 1 mM., B) 1000mM, C) 2mM, D ) 4mM, E) 6mM this enzyme is approximately: 2. To A) the enzyme concentration. B) the initial velocity of the catalyzed reaction at [S] >> Km. C) the initial velocity of the catalyzed reaction at...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT