Question

In: Math

A coin with probability p>0 of turning up heads is tossed 4 times. Let X be...

A coin with probability p>0 of turning up heads is tossed 4 times. Let X be the number of times heads are tossed.

(a) Find the probability function of X in terms of p.

(b) The result above can be extended to the case of n independent tosses (that is, for a generic number of tosses), and the probability function in this case receives a very specific name. Find the name of this particular probability function.

Notice that the probability of turning up tails in one toss is 1−p.

Solutions

Expert Solution

Probability of turning up heads in one toss = p >0

Probability of turning up tails in one toss = 1−p

number of tosses = 4

Let X be the number of times heads are tossed

(a) Find the probability function of X in terms of p.

Since, the outcome of each toss is independent of other and the probability of turning up heads is same in each case.

P[ getting k heads ] = getting k heads with probability p * getting ( 4 - k ) tails with probability ( 1 - p ) * arranging k heads out of 4 places

getting k heads with probability p = p^k

getting ( n - k ) tails with probability ( 1 - p ) = (1 - p)^(4 - k)

arranging k heads out of 4 places = 4Ck

P[ getting k heads ] = P[ X = k ] = 4Ck*p^k*(1 - p)^(4 - k)

(b) The result above can be extended to the case of n independent tosses

Replacing 4 by n

P[ X = k ] = nCk*p^k*(1 - p)^(n - k)

This is binomial probability distribution used when the events are independent and the probability of outcome is same at each trial


Related Solutions

a) A coin is tossed 4 times. Let X be the number of Heads on the...
a) A coin is tossed 4 times. Let X be the number of Heads on the first 3 tosses and Y be the number of Heads on the last three tossed. Find the joint probabilities pij = P(X = i, Y = j) for all relevant i and j. Find the marginal probabilities pi+ and p+j for all relevant i and j. b) Find the value of A that would make the function Af(x, y) a PDF. Where f(x, y)...
A coin that lands on heads with a probability of p is tossed multiple times. Each...
A coin that lands on heads with a probability of p is tossed multiple times. Each toss is independent. X is the number of heads in the first m tosses and Y is the number of heads in the first n tosses. m and n are fixed integers where 0 < m < n. Find the joint distribution of X and Y.
A coin is tossed 6 times. Let X be the number of Heads in the resulting...
A coin is tossed 6 times. Let X be the number of Heads in the resulting combination. Calculate the second moment of X. (A).Calculate the second moment of X (B). Find Var(X)
A bias coin has the probability 2/3 of turning up heads. The coin is thrown 4...
A bias coin has the probability 2/3 of turning up heads. The coin is thrown 4 times. (a) What is the probability that the total number of heads shown is 3? (b) Suppose that we know that outcome of the first throw is a head. Find the probability that the total number of heads shown is 3. (c) If we know that the total number of heads shown is 3, find the probability that the outcome of the first throw...
A coin is tossed 400 times, landing heads up 219 times. Is the coin fair?
A coin is tossed 400 times, landing heads up 219 times. Is the coin fair?
A fair coin is tossed four times. Let X denote the number of heads occurring and...
A fair coin is tossed four times. Let X denote the number of heads occurring and let Y denote the longest string of heads occurring. (i) determine the joint distribution of X and Y (ii) Find Cov(X,Y) and ρ(X,Y).
A fair coin is tossed r times. Let Y be the number of heads in these...
A fair coin is tossed r times. Let Y be the number of heads in these r tosses. Assuming Y=y, we generate a Poisson random variable X with mean y. Find the variance of X. (Answer should be based on r).
If a fair coin is tossed 25 times, the probability distribution for the number of heads,...
If a fair coin is tossed 25 times, the probability distribution for the number of heads, X, is given below. Find the mean and the standard deviation of the probability distribution using Excel Enter the mean and round the standard deviation to two decimal places. x   P(x) 0   0 1   0 2   0 3   0.0001 4   0.0004 5   0.0016 6   0.0053 7   0.0143 8   0.0322 9   0.0609 10   0.0974 11   0.1328 12   0.155 13   0.155 14   0.1328 15   0.0974 16  ...
Q7 A fair coin is tossed three times independently: let X denote the number of heads...
Q7 A fair coin is tossed three times independently: let X denote the number of heads on the first toss (i.e., X = 1 if the first toss is a head; otherwise X = 0) and Y denote the total number of heads. Hint: first figure out the possible values of X and Y , then complete the table cell by cell. Marginalize the joint probability mass function of X and Y in the previous qusetion to get marginal PMF’s.
A coin is tossed three times. X is the random variable for the number of heads...
A coin is tossed three times. X is the random variable for the number of heads occurring. a) Construct the probability distribution for the random variable X, the number of head occurring. b) Find P(x2). c) Find P(x1). d) Find the mean and the standard deviation of the probability distribution for the random variable X, the number of heads occurring.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT