Question

In: Mechanical Engineering

The working gas of a thermodynamic cycle is air(assume constant specific heats.)The gas originally starts at...

The working gas of a thermodynamic cycle is air(assume constant specific heats.)The gas originally starts at 100kPa, 4m3and 27oC. It undergoes a four step process:Process A-B: The gas is compressed at constant temperature to one-fourth of its volume. Process B-C: The volume of the gas is then doubled at constant pressure. Process C-D:The gas then undergoes an adiabatic expansion.Process D-A:The gas then undergoes a constant volume process back to its original statea) Make a table of the temperature, pressure, volume, internal energy, enthalpy, entropy and quality factor (T, P, V, U, H, S & x) at the start of each process.b) Make a table of the change in internal energy, heat flow, work done, change in enthalpy, and change in entropy (U, Q, W, H, S) during each leg of the cycle.c) Draw a well-labelled P-v diagram (indicating lines of constant temperature.)d) Calculate the thermal efficiency of the cycle.

Solutions

Expert Solution

This question can be solved only if the correct PV diagram is drawn. Please go through the detailed solution provided in the image for clear understanding. Please don’t forget to like the answer if you find it useful. Have a good day....


Related Solutions

For the following, assume air is an ideal gas with constant specific heats at 300K. Find...
For the following, assume air is an ideal gas with constant specific heats at 300K. Find the work and heat transfer and state whether they are into or out of the air. In an open system, air is heated at constant pressure from 27°C, 400 kPa to 500K. w = 0 kJ/kg, q = 201 kJ/kg In a closed system, air is heated at constant pressure from 27°C, 100 kPa to 500K. w = 57.4 kJ/kg, q = 201 kJ/kg
An air engine is modeled after the ott cycle. Assume ideal gas and air standard cold...
An air engine is modeled after the ott cycle. Assume ideal gas and air standard cold valus for properties. Intake air is at 100kPa and Temperature of 27°C. The compression ration is 8:1. The heat added during ignition is 1740 kJ/kg a) Draw and Label the Pv and Ts diagrams for the Otto cycle b)Find the specific volume at intake state #1 c) Find the temperature at the end of the compression stroke d) Find the Pressure at the end...
Consider a simple Brayton cycle using air as the working fluid with properties assumed constant and...
Consider a simple Brayton cycle using air as the working fluid with properties assumed constant and evaluated at room temperature (300 K). Conditions at the compressor inlet are T1 = 25°C and P1 = 200 kPa. The pressure ratio is 11 and maximum cycle temperature is 750°C. Answer the following (a) Compute the back?work ratio and cycle efficiency assuming both the turbine and compressor are isentropic (b) Compute the same quantities assuming only the turbine is isentropic while the compressor...
A gas-turbine power plant operates on the simple Brayton cycle with air as the working fluid...
A gas-turbine power plant operates on the simple Brayton cycle with air as the working fluid and delivers 32 MW of power. The minimum and maximum temperatures in the cycle are 310 and 900 K, and the pressure of air at the compressor exit is 8 times the value at the compressor inlet. Assuming an isentropic efficiency of 80% for the compressor and 86% for the turbine, determine the mass flow rate of air through the cycle. Account for the...
Assume you are working on an ideal gas-turbine cycle that has three stages of compression with...
Assume you are working on an ideal gas-turbine cycle that has three stages of compression with intercooling and three stages of expansion with reheating at 100 kPa and 290 K. This system uses a regenerator as well. The pressure ratio across each stage of the compressor and turbine is 3; the air temperature when entering the turbine is 1300 K; and the regenerator operates perfectly. Draw the T − s diagram of this system. Determine the mass flow rate of...
Thermodynamic In a piston-cylinder air at 100 kPa and 15°C undergoes the following cycle. First, it...
Thermodynamic In a piston-cylinder air at 100 kPa and 15°C undergoes the following cycle. First, it is compressed isentropically to a compression ratio of 20. Then 1800 kJ/kg of heat is transferred to the air at constant pressure. Afterwards the air expands isentropically. In the last step, heat is removed at constant volume until the air reaches its original state. Assuming air behaves as an ideal gas and with Cp and Cv independent of temperature, determine the: (a) pressure and...
An ideal gas undergoes the following Carnot Cycle. It starts in a chamber of volume .0065...
An ideal gas undergoes the following Carnot Cycle. It starts in a chamber of volume .0065 m3 and temperature 345 Kelvin and pressure 630 kPa (state 1). It is allowed to expand isothermally to a volume of .01066 m3 (state 2) while heat is added to the gas.  Then it expands adiabatically to a volume of .01784 m3 (state 3). Then, it is compressed isothermally to a volume of Vf m3 (state 4) while heat is extracted from the gas.  Finally, it...
An Otto Cycle has air operating as the working fluid. The air begins the compression process...
An Otto Cycle has air operating as the working fluid. The air begins the compression process at 90 kPa and 40oC. During the heat addition process, the maximum temperature of the air (T3) is 2000oC. The compression ratio of the cycle is 9.2. Treating this as a “Hot Air Standard Cycle”, determine the temperature and pressure at the end of each process, the net work per kg of air produced in the cycle, the thermal efficiency of the cycle, and...
A gas turbine operates as a cold-air standard Brayton cycle. Air enetrs the compressor at 300K...
A gas turbine operates as a cold-air standard Brayton cycle. Air enetrs the compressor at 300K and 100kPa and is compressed to 700kPa. During the heat addition process in the combustor, the temperature of the air increases to 1000K. The turbine and compressor can be assumed to be operating isentropically. Evaluate specific heat at 300K. a. thermal efficiency of the cycle? b. net work of the cycle (kj/kg)? c. Back work ratio?
One kilogram of air is taken through a constant volume cycle. At the commencement of the...
One kilogram of air is taken through a constant volume cycle. At the commencement of the adiabatic compression, the pressure and temperature are 103 kN/m2 and 1000C respectively. The adiabatic compression has a volume ratio of 6:1. The maximum pressure of the cycle is 3.45 MN/m2. Determine, for the cycle, the pressure, volume and temperature at each of the cycle process change points,                [8] the heat transferred to the air,                                                                                                            [3] the heat rejected by the air,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT