Question

In: Mechanical Engineering

Consider a simple Brayton cycle using air as the working fluid with properties assumed constant and...

Consider a simple Brayton cycle using air as the working fluid with properties assumed constant and evaluated at room temperature (300 K). Conditions at the compressor inlet are T1 = 25°C and P1 = 200 kPa. The pressure ratio is 11 and maximum cycle temperature is 750°C. Answer the following (a) Compute the back?work ratio and cycle efficiency assuming both the turbine and compressor are isentropic (b) Compute the same quantities assuming only the turbine is isentropic while the compressor has an isentropic efficiency of 75% (c) Compute the same quantities assuming only the compressor is isentropic while the turbine has an isentropic efficiency of 75%

Please show all work, assume ideal gas and cold air assumptions and please write legible. Thanks

Solutions

Expert Solution


Related Solutions

a simple ideal Brayton cycle with air as the working fluid has a pressure ratio of...
a simple ideal Brayton cycle with air as the working fluid has a pressure ratio of 10. The air enters the compressor at 520 R and the turbine at 2000 R. Accounting for the variation of specific heats with temperature, determine (a) the ait temperature at the compressor exit, (b) the back work ratio, and (c) the thermal efficiency.
Consider an ideal Brayton cycle with reheat (air standard). The pressure and temperature of the air...
Consider an ideal Brayton cycle with reheat (air standard). The pressure and temperature of the air at the inlet of the gas turbine is 1200 kPa and 1000 K respectively. Assume the gas expands to 100 kPa in two stages. Between the stages, the air is reheated at a constant pressure of 350 kPa to 1000 K. Assume a fully isentropic process in the turbines. Find: (a) the work produced at each stage, in kJ/kg of air flowing. (b) the...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has a pressure ratio of 7. Air enters the compressor at 15 ºC at a rate of 10 kg/s and the gas turbine at 950 ºC. The bottoming cycle is a reheat Rankine cycle between the pressure limits of 6 MPa and 10 kPa. Steam is heated in a heat exchanger at a rate of 1.15 kg/s by the exhaust gases leaving the gas turbine,...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has a pressure ratio of 7. Air enters the compressor at 15 ºC at a rate of 10 kg/s and the gas turbine at 950 ºC. The bottoming cycle is a reheat Rankine cycle between the pressure limits of 6 MPa and 10 kPa. Steam is heated in a heat exchanger at a rate of 1.15 kg/s by the exhaust gases leaving the gas turbine,...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The net power...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The net power of power plant is 220-MW. At the turbine inlet, steam is at 9 MPa and 560°C. The condenser pressure is 20 kPa. Determine the following values.   The temperature at the pump inlet. °CThe specific enthalpy at the pump inlet. kJ/kgThe specific volume at the pump inlet. m3/kgThe pump work. kJ/kgThe temperature at pump exit. °CThe specific entropy at turbine inlet. kJ/kg·KThe quality of steam...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The boiler pressure...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The boiler pressure is 6100 kPa and the condenser pressure is 30 kPa. At the turbine inlet, steam is at 480°C. The isentropic efficiency of the turbine is 92 percent. The pump losses are negligible and the water leaving the condenser is subcooled by 6.3°C. The boiler is sized for a mass flow rate of 20 kg/s. Determine the following values. The temperature at the pump inlet....
An Otto Cycle has air operating as the working fluid. The air begins the compression process...
An Otto Cycle has air operating as the working fluid. The air begins the compression process at 90 kPa and 40oC. During the heat addition process, the maximum temperature of the air (T3) is 2000oC. The compression ratio of the cycle is 9.2. Treating this as a “Hot Air Standard Cycle”, determine the temperature and pressure at the end of each process, the net work per kg of air produced in the cycle, the thermal efficiency of the cycle, and...
An ideal Otto cycle uses air as the working fluid; its state at the beginning of...
An ideal Otto cycle uses air as the working fluid; its state at the beginning of the compression is 120 psia and 60°F, its temperature at the end of the combustion is 1500°F, and its compression ratio is 9. Use constant specific heats at room temperature. Determine the rate of heat addition and rejection for this ideal Otto cycle when it produces 120 hp. The properties of air at room temperature are R = 0.3704 psia·ft3/lbm·R, cp = 0.240 Btu/lbm·R,...
A combined cycle power system uses a simple gas-turbine Brayton cycle in conjunction with a simple...
A combined cycle power system uses a simple gas-turbine Brayton cycle in conjunction with a simple Rankine cycle to produce a total power of 100 MW. In such configuration, the exhaust stream from the gas turbine is used as the heat source for the steam power cycle in a heat exchanger as shown in the figure. The following data are known for the gas-turbine cycle. Atmospheric air enters the compressor at 100 kPa and 20oC, the compressor pressure ratio is...
7.4 A complex Brayton-cycle power plant using intercooling, reheat, and regeneration is analyzed using the air...
7.4 A complex Brayton-cycle power plant using intercooling, reheat, and regeneration is analyzed using the air standard method. Air is compressed from State 1 to State 2 using a compressor with a pressure ratio of RP1. An intercooler is used to cool the air to State 3 before entering a second compressor with a pressure ratio of RP2. The compressed air exits at State 4 and is preheated in a regenerator that uses the exhaust air from the low-pressure turbine....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT