Question

In: Mechanical Engineering

Consider a simple Brayton cycle using air as the working fluid with properties assumed constant and...

Consider a simple Brayton cycle using air as the working fluid with properties assumed constant and evaluated at room temperature (300 K). Conditions at the compressor inlet are T1 = 25°C and P1 = 200 kPa. The pressure ratio is 11 and maximum cycle temperature is 750°C. Answer the following (a) Compute the back?work ratio and cycle efficiency assuming both the turbine and compressor are isentropic (b) Compute the same quantities assuming only the turbine is isentropic while the compressor has an isentropic efficiency of 75% (c) Compute the same quantities assuming only the compressor is isentropic while the turbine has an isentropic efficiency of 75%

Please show all work, assume ideal gas and cold air assumptions and please write legible. Thanks

Solutions

Expert Solution


Related Solutions

a simple ideal Brayton cycle with air as the working fluid has a pressure ratio of...
a simple ideal Brayton cycle with air as the working fluid has a pressure ratio of 10. The air enters the compressor at 520 R and the turbine at 2000 R. Accounting for the variation of specific heats with temperature, determine (a) the ait temperature at the compressor exit, (b) the back work ratio, and (c) the thermal efficiency.
A gas-turbine power plant operates on the simple Brayton cycle with air as the working fluid...
A gas-turbine power plant operates on the simple Brayton cycle with air as the working fluid and delivers 32 MW of power. The minimum and maximum temperatures in the cycle are 310 and 900 K, and the pressure of air at the compressor exit is 8 times the value at the compressor inlet. Assuming an isentropic efficiency of 80% for the compressor and 86% for the turbine, determine the mass flow rate of air through the cycle. Account for the...
Consider an ideal Brayton cycle with reheat (air standard). The pressure and temperature of the air...
Consider an ideal Brayton cycle with reheat (air standard). The pressure and temperature of the air at the inlet of the gas turbine is 1200 kPa and 1000 K respectively. Assume the gas expands to 100 kPa in two stages. Between the stages, the air is reheated at a constant pressure of 350 kPa to 1000 K. Assume a fully isentropic process in the turbines. Find: (a) the work produced at each stage, in kJ/kg of air flowing. (b) the...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has a pressure ratio of 7. Air enters the compressor at 15 ºC at a rate of 10 kg/s and the gas turbine at 950 ºC. The bottoming cycle is a reheat Rankine cycle between the pressure limits of 6 MPa and 10 kPa. Steam is heated in a heat exchanger at a rate of 1.15 kg/s by the exhaust gases leaving the gas turbine,...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has a pressure ratio of 7. Air enters the compressor at 15 ºC at a rate of 10 kg/s and the gas turbine at 950 ºC. The bottoming cycle is a reheat Rankine cycle between the pressure limits of 6 MPa and 10 kPa. Steam is heated in a heat exchanger at a rate of 1.15 kg/s by the exhaust gases leaving the gas turbine,...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The net power...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The net power of power plant is 220-MW. At the turbine inlet, steam is at 9 MPa and 560°C. The condenser pressure is 20 kPa. Determine the following values.   The temperature at the pump inlet. °CThe specific enthalpy at the pump inlet. kJ/kgThe specific volume at the pump inlet. m3/kgThe pump work. kJ/kgThe temperature at pump exit. °CThe specific entropy at turbine inlet. kJ/kg·KThe quality of steam...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The boiler pressure...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The boiler pressure is 6100 kPa and the condenser pressure is 30 kPa. At the turbine inlet, steam is at 480°C. The isentropic efficiency of the turbine is 92 percent. The pump losses are negligible and the water leaving the condenser is subcooled by 6.3°C. The boiler is sized for a mass flow rate of 20 kg/s. Determine the following values. The temperature at the pump inlet....
An Otto Cycle has air operating as the working fluid. The air begins the compression process...
An Otto Cycle has air operating as the working fluid. The air begins the compression process at 90 kPa and 40oC. During the heat addition process, the maximum temperature of the air (T3) is 2000oC. The compression ratio of the cycle is 9.2. Treating this as a “Hot Air Standard Cycle”, determine the temperature and pressure at the end of each process, the net work per kg of air produced in the cycle, the thermal efficiency of the cycle, and...
(10 pts) Air (R = 0.287 kJ/kg.K) enters the compressor of a simple Brayton cycle at...
(10 pts) Air (R = 0.287 kJ/kg.K) enters the compressor of a simple Brayton cycle at 94 kPa and 7oC. The pressure ratio is 19.2, the compressor efficiency is 81%, the turbine inlet temperature is 1600 K and the turbine isentropic efficiency is 85%. The mass flow rate is 21 kg/s. Using variable specific heat analysis, determine: (2 pts) The power input to the compressor, in kW. (2 pts) The rate of heat input in the combustion chamber, in kW....
An ideal Otto cycle uses air as the working fluid; its state at the beginning of...
An ideal Otto cycle uses air as the working fluid; its state at the beginning of the compression is 120 psia and 60°F, its temperature at the end of the combustion is 1500°F, and its compression ratio is 9. Use constant specific heats at room temperature. Determine the rate of heat addition and rejection for this ideal Otto cycle when it produces 120 hp. The properties of air at room temperature are R = 0.3704 psia·ft3/lbm·R, cp = 0.240 Btu/lbm·R,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT