In: Math
A company has sales of automobiles in the past three years as given in the table below. Using trend and seasonal components, predict the sales for each quarter of year 4.
Year |
Quarter |
Sales |
1 |
1 |
71 |
2 |
49 |
|
3 |
58 |
|
4 |
78 |
|
2 |
1 |
68 |
2 |
41 |
|
3 |
60 |
|
4 |
81 |
|
3 |
1 |
62 |
2 |
51 |
|
3 |
53 |
|
4 |
72 |
intercept: = 62.55 -->
INTERCEPT(D2:D13,C2:C13)
slope= -0.08 --> SLOPE(D2:D13,C2:C13)
regression line: sales = 62.55 - 0.08*t
Year | Quarter | t | Actual sales | Trendline = 62.55 - 0.08*t | Seasonal Ratio = actual/trendline | Seasonal Index | Forecast = trend*seasonal index |
1 | 1 | 1 | 71 | 62.47 | 1.1365 | 1.078 | 67.33 |
2 | 2 | 49 | 62.39 | 0.7854 | 0.757 | 47.25 | |
3 | 3 | 58 | 62.31 | 0.9308 | 0.919 | 57.29 | |
4 | 4 | 78 | 62.23 | 1.2534 | 1.244 | 77.39 | |
2 | 1 | 5 | 68 | 62.15 | 1.0941 | 1.078 | 66.99 |
2 | 6 | 41 | 62.07 | 0.6605 | 0.757 | 47.00 | |
3 | 7 | 60 | 61.99 | 0.9679 | 0.919 | 56.99 | |
4 | 8 | 81 | 61.91 | 1.3084 | 1.244 | 76.99 | |
3 | 1 | 9 | 62 | 61.83 | 1.0027 | 1.078 | 66.64 |
2 | 10 | 51 | 61.75 | 0.8259 | 0.757 | 46.76 | |
3 | 11 | 53 | 61.67 | 0.8594 | 0.919 | 56.70 | |
4 | 12 | 72 | 61.59 | 1.1690 | 1.244 | 76.59 | |
4 | 1 | 13 | 61.51 | 1.078 | 66.30 | ||
2 | 14 | 61.43 | 0.757 | 46.52 | |||
3 | 15 | 61.35 | 0.919 | 56.40 | |||
4 | 16 | 61.27 | 1.244 | 76.20 |
excel sheet: