Question

In: Math

The data in the table represent the weights of various domestic cars and their miles per...

The data in the table represent the weights of various domestic cars and their miles per gallon in the city for the 2008 model year. For these​ data, the​ least-squares regression line is ModifyingAbove y with -0.006x + 42.216. A twelfth car weighs 3,425 pounds and gets 12 miles per gallon.

​(a) Compute the coefficient of determination of the expanded data set. What effect does the addition of the twelfth car to the data set have on Rsquared​? ​

(b) Is the point corresponding to the twelfth car​ influential? Is it an​ outlier?

Car, Weight (pounds) x, Miles per Gallon y
1 3766 20
2 3989 21
3 3532 20
4 3170 22
5 2575 28
6 3735 20
7 2605 27
8 3772 18
9 3310 19
10 2993 26
11 2755 25

Solutions

Expert Solution

Solution:

​(a) Compute the coefficient of determination of the expanded data set. What effect does the addition of the twelfth car to the data set have on R-squared​? ​

Answer: We can use the excel regression data analysis tool to find the coefficient of determination. The excel output is given below:

Therefore, the coefficient of determination is 0.4929. Addition of the twelfth car has reduced the R-squared value of the model.

(b) Is the point corresponding to the twelfth car​ influential? Is it an​ outlier?

Answer: The point corresponding to the twelfth car is an outlier.


Related Solutions

The data in the table represent the weights of various domestic cars and their miles per...
The data in the table represent the weights of various domestic cars and their miles per gallon in the city for the 2008 model year. For the data from the first 11​ cars, the​ least-squares regression line is y=−0.0062x+42.4755. A twelfth car weighs 2,705 pounds and gets 14 miles per gallon. Compute the coefficient of determination of the expanded data set​ (including the twelfth​ car). What effect does the addition of the twelfth car to the data set have on...
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 41.4 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? 32.7 34.0 34.7 35.4 36.0 36.2 37.3 37.6 37.7 37.9 38.1 38.5 38.6 39.0 39.2 39.4 39.9 40.7 41.4 41.8...
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 36.3 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? LOADING... Click the icon to view the data 32.5 35.9 38.0 38.6 39.9 42.4 34.4 36.3 38.1 38.7 40.6 42.7...
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 38.4 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? 32.5; 35.9; 37.6; 38.6; 40.4; 42.5; 34.0; 36.2; 37.8; 38.9; 40.6; 42.6; 34.7; 37.3; 38.1; 39.4 ;41.3; 43.4; 35.6; 37.4;...
the accompanying data represent the miles per gallon of a random sample of cars with a​...
the accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) compute the​ z-score corresponding to the individual who obtained 38.7 miles per gallon. interpret this result. ​(b) determine the quartiles. ​(c) compute and interpret the interquartile​ range, iqr. ​(d) determine the lower and upper fences. are there any​ outliers?39.939.9 42.442.4 34.634.6 36.336.3 38.138.1 38.938.9 40.540.5 42.842.8 34.734.7 37.537.5 38.338.3 39.439.4 41.441.4 43.643.6 35.235.2 37.637.6 38.538.5 39.739.7 41.641.6 49.049.0
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 39.839.8 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? 32.4 34.1 34.5 35.7 36.1 36.3 37.5 37.7 37.9 38.1 38.3 38.5 38.7 39.1 39.5 39.8 39.9 40.6 41.3 41.6...
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 32.7 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? 32.7 35.9 38.0 38.7 40.2 42.2 34.4 36.2 38.1 38.9 40.7 42.7 34.6 37.5 38.2 39.5 41.5 43.6 35.2 37.8...
The following table shows the miles per gallon of various cars and their weight in pounds....
The following table shows the miles per gallon of various cars and their weight in pounds. Suppose we are interested in predicting the miles per gallon of a car based on its weight. Car Weight MPG Buick Lucerne 3735 17 Cadillac CTS 3860 16 Chevrolet Cobalt 2721 25 Chevrolet Impala 3555 19 Chrysler Sebring Sedan 3319 21 Dodge Caliber 2966 23 Dodge Charger 3727 17 Ford Focus 2605 24 Ford Mustang 3473 19 Lincoln MKZ 3796 17 Mercury Sable 3310...
The data in the accompanying table represent the heights and weights of a random sample of...
The data in the accompanying table represent the heights and weights of a random sample of professional baseball players. Complete parts ​(a) through ​(c) below. Player   Height_(inches)   Weight_(pounds) Player_1   76   227 Player_2   75   197 Player_3   72   180 Player_4   82   231 Player_5   69   185 Player_6   74   190 Player_7   75   228 Player_8   71   200 Player_9   75   230 (b) Determine the​ least-squares regression line. Test whether there is a linear relation between height and weight at the alphaαequals=0.05 level of significance. Determine the​...
The data in the accompanying table represent the heights and weights of a random sample of...
The data in the accompanying table represent the heights and weights of a random sample of professional baseball players. Complete parts ​(a) through ​(c) below. Player Height​ (inches) Weight​ (pounds) Player 1 75 225 Player 2 75 197 Player 3 72 180 Player 4 82 231 Player 5 69 185 Player 6 7474 190190 Player 7 75 228 Player 8 71 200 Player 9 75 230 (a) Draw a scatter diagram of the​ data, treating height as the explanatory variable...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT