Question

In: Statistics and Probability

The accompanying data represent the miles per gallon of a random sample of cars with a​...

The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine.

​(a)

Compute the​ z-score corresponding to the individual who obtained

41.4 miles per gallon. Interpret this result.

​(b)

Determine the quartiles.

​(c)

Compute and interpret the interquartile​ range, IQR.

​(d)

Determine the lower and upper fences. Are there any​ outliers?

32.7
34.0
34.7
35.4
36.0
36.2
37.3
37.6
37.7
37.9
38.1
38.5
38.6
39.0
39.2
39.4
39.9
40.7
41.4
41.8
42.5
42.8
43.7
49.0

Solutions

Expert Solution

Solution:given that 32.7,34.0,34.7,35.4,36.0,36.2,37.3,37.6,37.7,37.9,38.1,38.5,38.6,39.0,39.2,39.4,39.9,40.7,41.4,41.8,42.5,42.8,43.7,49.0

mean = 38.92, sd = 3.54

(a) Z-score : (41.4-38.92)/3.54 = 0.7006

(b) Quartiles :

First Quartiles : 36.75
Explanation

The first quartile (or lower quartile or 25th percentile) is the median of the bottom half of the numbers. So, to find the first quartile, we need to place the numbers in value order and find the bottom half.

32.7 34.0 34.7 35.4 36.0 36.2 37.3 37.6 37.7 37.9 38.1 38.5 38.6 39.0 39.2 39.4 39.9 40.7 41.4 41.8 42.5 42.8 43.7 49.0   

So, the bottom half is

32.7 34.0 34.7 35.4 36.0 36.2 37.3 37.6 37.7 37.9 38.1 38.5   

The median of these numbers is 36.75

Second Quartiles : 38.55

Explanation

The median is the middle number in a sorted list of numbers. So, to find the median, we need to place the numbers in value order and find the middle number.

Ordering the data from least to greatest, we get:

32.7 34.0 34.7 35.4 36.0 36.2 37.3 37.6 37.7 37.9 38.1 38.5 38.6 39.0 39.2 39.4 39.9 40.7 41.4 41.8 42.5 42.8 43.7 49.0   

As you can see, we do not have just one middle number but we have a pair of middle numbers, so the median is the average of these two numbers:


median = (38.5+38.6)/2 = 38.55


Third quartile : 41.05

Explanation

The third quartile (or upper quartile or 75th percentile) is the median of the upper half of the numbers. So, to find the third quartile, we need to place the numbers in value order and find the upper half.

32.7 34.0 34.7 35.4 36.0 36.2 37.3 37.6 37.7 37.9 38.1 38.5 38.6 39.0 39.2 39.4 39.9 40.7 41.4 41.8 42.5 42.8 43.7 49.0   

So, the upper half is

38.6 39.0 39.2 39.4 39.9 40.7 41.4 41.8 42.5 42.8 43.7 49.0   

The median of these numbers is 41.05.

(c)

interpret the interquartile range, IQR : 4.3

Explanation

The interquartile range is the difference between the third and first quartiles.

The third quartile is 41.05.

The first quartile is 36.75.

The interquartile range = 41.05 - 36.75 = 4.3.

(d)

Lower fence: 30.3 , Upper fence: 47.5


Outliers : 49



Related Solutions

The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 36.3 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? LOADING... Click the icon to view the data 32.5 35.9 38.0 38.6 39.9 42.4 34.4 36.3 38.1 38.7 40.6 42.7...
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 38.4 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? 32.5; 35.9; 37.6; 38.6; 40.4; 42.5; 34.0; 36.2; 37.8; 38.9; 40.6; 42.6; 34.7; 37.3; 38.1; 39.4 ;41.3; 43.4; 35.6; 37.4;...
the accompanying data represent the miles per gallon of a random sample of cars with a​...
the accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) compute the​ z-score corresponding to the individual who obtained 38.7 miles per gallon. interpret this result. ​(b) determine the quartiles. ​(c) compute and interpret the interquartile​ range, iqr. ​(d) determine the lower and upper fences. are there any​ outliers?39.939.9 42.442.4 34.634.6 36.336.3 38.138.1 38.938.9 40.540.5 42.842.8 34.734.7 37.537.5 38.338.3 39.439.4 41.441.4 43.643.6 35.235.2 37.637.6 38.538.5 39.739.7 41.641.6 49.049.0
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 39.839.8 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? 32.4 34.1 34.5 35.7 36.1 36.3 37.5 37.7 37.9 38.1 38.3 38.5 38.7 39.1 39.5 39.8 39.9 40.6 41.3 41.6...
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 32.7 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? 32.7 35.9 38.0 38.7 40.2 42.2 34.4 36.2 38.1 38.9 40.7 42.7 34.6 37.5 38.2 39.5 41.5 43.6 35.2 37.8...
A random sample of Midsize Sedans’ Miles per Gallon (mpg) were recorded and the                   data is...
A random sample of Midsize Sedans’ Miles per Gallon (mpg) were recorded and the                   data is listed below. Assume the miles per gallon are normally distributed: 24.6      30.2      29.9      33.1      26.7 28.5      31.6      36.3      24.4      28.7 Calculate the mean (1 pt): Calculate the standard deviation (1 pt): Construct a 90% confidence interval for population mean (4 pts): Construct a 95% confidence interval for population standard deviation (4 pts):
The data in the table represent the weights of various domestic cars and their miles per...
The data in the table represent the weights of various domestic cars and their miles per gallon in the city for the 2008 model year. For the data from the first 11​ cars, the​ least-squares regression line is y=−0.0062x+42.4755. A twelfth car weighs 2,705 pounds and gets 14 miles per gallon. Compute the coefficient of determination of the expanded data set​ (including the twelfth​ car). What effect does the addition of the twelfth car to the data set have on...
The data in the table represent the weights of various domestic cars and their miles per...
The data in the table represent the weights of various domestic cars and their miles per gallon in the city for the 2008 model year. For these​ data, the​ least-squares regression line is ModifyingAbove y with -0.006x + 42.216. A twelfth car weighs 3,425 pounds and gets 12 miles per gallon. ​(a) Compute the coefficient of determination of the expanded data set. What effect does the addition of the twelfth car to the data set have on Rsquared​? ​ (b)...
The data in the accompanying table represent the heights and weights of a random sample of...
The data in the accompanying table represent the heights and weights of a random sample of professional baseball players. Complete parts ​(a) through ​(c) below. Player   Height_(inches)   Weight_(pounds) Player_1   76   227 Player_2   75   197 Player_3   72   180 Player_4   82   231 Player_5   69   185 Player_6   74   190 Player_7   75   228 Player_8   71   200 Player_9   75   230 (b) Determine the​ least-squares regression line. Test whether there is a linear relation between height and weight at the alphaαequals=0.05 level of significance. Determine the​...
The data in the accompanying table represent the heights and weights of a random sample of...
The data in the accompanying table represent the heights and weights of a random sample of professional baseball players. Complete parts ​(a) through ​(c) below. Player Height​ (inches) Weight​ (pounds) Player 1 75 225 Player 2 75 197 Player 3 72 180 Player 4 82 231 Player 5 69 185 Player 6 7474 190190 Player 7 75 228 Player 8 71 200 Player 9 75 230 (a) Draw a scatter diagram of the​ data, treating height as the explanatory variable...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT