In: Math
Suppose that National Motors randomly selects a sample of n = 91 ZX-900s. The company records the stopping distance of each of these automobiles and calculates the mean and standard deviation of the sample of n = 81 stopping distances to be ȳ = 57.8feet and s = 6.02feet.
1. Conduct hypothesis test
H0 :μ=60, Ha :μ<60.
Set α = 0.5. And calculate the p-value.
Ho :   µ =   60  
           
   
Ha :   µ <   60  
    (Left tail test)      
   
          
           
   
Level of Significance ,    α =   
0.05          
       
sample std dev ,    s =    6.0200  
           
   
Sample Size ,   n =    81  
           
   
Sample Mean,    x̅ =   57.8000  
           
   
          
           
   
degree of freedom=   DF=n-1=   80  
           
   
          
           
   
Standard Error , SE = s/√n =   6.0200   / √
   81   =   0.6689  
   
t-test statistic= (x̅ - µ )/SE = (   57.800  
-   60   ) /    0.669  
=   -3.29
          
           
   
  
p-Value   =  
0.0007   [Excel formula =t.dist(t-stat,df)
]          
   
Decision:   p-value<α, Reject null hypothesis
          
           
Conclusion: There is enough evidence to conclude that true mean is
less than 60